ﻻ يوجد ملخص باللغة العربية
An extremely broad and important class of phenomena in nature involves the settling and aggregation of matter under gravitation in fluid systems. Some examples include: sedimenting marine snow particles in lakes and oceans (central to carbon sequestration), dense microplastics in the oceans (which impact ocean ecology and the food chain), and even iron snow on Mercury (conjectured as its magnetic field source). These fluid systems all have stable density stratification, which is known to trap particulates through upper lightweight fluid coating the sinking particles, thus providing transient buoyancy. The current understanding of aggregation of such trapped matter involves collisions (due to Brownian motion, shear, and differential settling) and adhesion. Here, we observe and rationalize a new fundamental effective attractive mechanism by which particles suspended within stratification may self-assemble and form large aggregates without need for short range binding effects. This phenomenon arises through a complex interplay involving solute diffusion, impermeable boundaries, and aggregate geometry, which produces toroidal flows. We show that these toroidal flows yield attractive horizontal forces between particles. We observe that many particles demonstrate a collective motion revealing a system which self-assembles, appearing to solve jigsaw-like puzzles on its way to organizing into a disc-like shape, with the effective force increasing as the collective disc radius grows. Control experiments with two objects isolate the individual dynamics, which are quantitatively predicted through numerical integration of the underlying equations of motion. This new mechanism may be an important process in formation of marine snow aggregates and distribution of phytoplankton in lakes and oceans. Further, it potentially provides a new mechanism for general sorting and packing of layered material.
The interplay between incompressibility and stratification can lead to non-conservation of horizontal momentum in the dynamics of a stably stratified incompressible Euler fluid filling an infinite horizontal channel between rigid upper and lower plat
Exact solutions for laminar stratified flows of Newtonian/non-Newtonian shear-thinning fluids in horizontal and inclined channels are presented. An iterative algorithm is proposed to compute the laminar solution for the general case of a Carreau non-
The interaction between planetary waves and an arbitrary zonal flow is studied from a phase-space viewpoint. Using the Wigner distribution, a planetary wave Vlasov equation is derived that includes the contribution of the mean flow to the zonal poten
Linear stability of horizontal and inclined stratified channel flows of Newtonian/non-Newtonian shear-thinning fluids is investigated with respect to all wavelength perturbations. The Carreau model has been chosen for the modeling of the rheology of
Ruelle predicted that the maximal amplification of perturbations in homogeneous isotropic turbulence is exponential $e^{sigma sqrt{Re} t}$ (where $sigma sqrt{Re}$ is the maximal Liapunov exponent). In our earlier works, we predicted that the maximal