ﻻ يوجد ملخص باللغة العربية
Single solitons are a special limit of more general waveforms commonly referred to as cnoidal waves or Turing rolls. We theoretically and computationally investigate the stability and accessibility of cnoidal waves in microresonators. We show that they are robust and, in contrast to single solitons, can be easily and deterministically accessed in most cases. Their bandwidth can be comparable to single solitons, in which limit they are effectively a periodic train of solitons and correspond to a frequency comb with increased power. We comprehensively explore the three-dimensional parameter space that consists of detuning, pump amplitude, and mode circumference in order to determine where stable solutions exist. To carry out this task, we use a unique set of computational tools based on dynamical system theory that allow us to rapidly and accurately determine the stable region for each cnoidal wave periodicity and to find the instability mechanisms and their time scales. Finally, we focus on the soliton limit, and we show that the stable region for single solitons almost completely overlaps the stable region for both continuous waves and several higher-periodicity cnoidal waves that are effectively multiple soliton trains. This result explains in part why it is difficult to access single solitons deterministically.
We report the existence of vectorial dark dissipative solitons in optical cavities subject to a coherently injected beam. We assume that the resonator is operating in a normal dispersion regime far from any modulational instability. We show that the
We investigate the formation of dark vector localized structures in the presence of nonlinear polarization mode coupling in optical resonators subject to a coherent optical injection in the normal dispersion regime. This simple device is described by
The generation of high-intensity optical fields from harmonic-wave photons, interacting via a cross-phase modulation with dark solitons both propagating in a Kerr nonlinear medium, is examined. The focus is on a pump consisting of time-entangled dark
We study numerically the nonlinear stage of modulational instability (MI) of cnoidal waves, in the framework of the focusing one-dimensional Nonlinear Schrodinger (NLS) equation. Cnoidal waves are the exact periodic solutions of the NLS equation and
We present a detailed analysis of strongly driven spontaneous four-wave mixing in a lossy integrated microring resonator side-coupled to a channel waveguide. A nonperturbative, analytic solution within the undepleted pump approximation is developed f