ﻻ يوجد ملخص باللغة العربية
We present measurements of the differential cross sections of inclusive $J/psi$ meson production as a function of transverse momentum ($p_{T}^{J/psi}$) using the $mu^{+}mu^{-}$ and $e^{+}e^{-}$ decay channels in proton+proton collisions at center-of-mass energies of 510 and 500 GeV, respectively, recorded by the STAR detector at the Relativistic Heavy Ion Collider. The measurement from the $mu^{+}mu^{-}$ channel is for 0 $< p_{T}^{J/psi} <$ 9 GeV/$c$ and rapidity range $|y^{J/psi}| < $ 0.4, and that from the $e^{+}e^{-}$ channel is for 4 $< p_{T}^{J/psi} <$ 20 GeV/$c$ and $|y^{J/psi}| < $ 1.0. The $psi(2S)$ to $J/psi$ ratio is also measured for 4 $< p_{T}^{rm meson} <$ 12 GeV/$c$ through the $e^{+}e^{-}$ decay channel. Model calculations, which incorporate different approaches toward the $J/psi$ production mechanism, are compared with experimental results and show reasonable agreement within uncertainties.
We report measurements of the charge-separated $W^{+(-)} to e^{+(-)} + u_e(bar{ u}_e)$ and $Z/gamma^* to e^+e^-$ production cross sections at mid-rapidity in proton-proton collisions at $sqrt{s}$ = 500 GeV. These results are based on 13.2 pb$^{-1}$
The PHENIX experiment has measured the spin alignment for inclusive $J/psirightarrow e^{+}e^{-}$ decays in $p$+$p$ collisions at $sqrt{s}=510$ GeV at midrapidity. The angular distributions have been measured in three different polarization frames, an
The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the differential cross section, mean transverse momentum, mean transverse momentum squared of inclusive $J/psi$ and cross-section ratio of $psi(2S)$ to $J/psi$ at forward rapid
We report the first measurement of the fraction of $J/psi$ mesons coming from $B$-meson decay ($F_{B{rightarrow}J/psi}$) in $p$+$p$ collisions at $sqrt{s}=$ 510 GeV. The measurement is performed using the forward silicon vertex detector and central v
Transverse single spin asymmetry, $A_{N}$, of very forward $pi^{0}$ production from polarized $p + p$ collisions provides new information toward an understanding of its production mechanism. $A_{N}$ of forward $pi^{0}$ in the pseudorapidity region of