ﻻ يوجد ملخص باللغة العربية
Microlensing of stars, e.g. in the Galactic bulge and Andromeda galaxy (M31), is among the most robust, powerful method to constrain primordial black holes (PBHs) that are a viable candidate of dark matter. If PBHs are in the mass range $M_{rm PBH} lower.5exhbox{$; buildrel < over sim ;$} 10^{-10}M_odot$, its Schwarzschild radius ($r_{rm Sch}$) becomes comparable with or shorter than optical wavelength ($lambda)$ used in a microlensing search, and in this regime the wave optics effect on microlensing needs to be taken into account. For a lensing PBH with mass satisfying $r_{rm Sch}sim lambda$, it causes a characteristic oscillatory feature in the microlensing light curve, and it will give a smoking gun evidence of PBH if detected, because any astrophysical object cannot have such a tiny Schwarzschild radius. Even in a statistical study, e.g. constraining the abundance of PBHs from a systematic search of microlensing events for a sample of many source stars, the wave effect needs to be taken into account. We examine the impact of wave effect on the PBH constraints obtained from the $r$-band (6210AA) monitoring observation of M31 stars in Niikura et al. (2019), and find that a finite source size effect is dominant over the wave effect for PBHs in the mass range $M_{rm PBH}simeq[10^{-11},10^{-10}]M_odot$. We also discuss that, if a denser-cadence (10~sec), $g$-band monitoring observation for a sample of white dwarfs over a year timescale is available, it would allow one to explore the wave optics effect on microlensing light curve, if it occurs, or improve the PBH constraints in $M_{rm PBH}lower.5exhbox{$; buildrel < over sim ;$} 10^{-11}M_odot$ even from a null detection.
It has recently been proposed that massive primordial black holes (PBH) could constitute all of the dark matter, providing a novel scenario of structure formation, with early reionization and a rapid growth of the massive black holes at the center of
We revisit cosmic microwave background (CMB) constraints on primordial black hole dark matter. Spectral distortion limits from COBE/FIRAS do not impose a relevant constraint. Planck CMB anisotropy power spectra imply that primordial black holes with
We constrain the abundance of primordial black holes (PBH) using 2622 microlensing events obtained from 5-years observations of stars in the Galactic bulge by the Optical Gravitational Lensing Experiment (OGLE). The majority of microlensing events di
Primordial black holes (PBHs) have long been suggested as a viable candidate for the elusive dark matter (DM). The abundance of such PBHs has been constrained using a number of astrophysical observations, except for a hitherto unexplored mass window
Primordial black holes (PBHs) may form in the early stages of the Universe via the collapse of large density perturbations. Depending on the formation mechanism, PBHs may exist and populate today the galactic halos and have masses in a wide range, fr