ﻻ يوجد ملخص باللغة العربية
Quantum simulators are an essential tool for understanding complex quantum materials. Platforms based on ultracold atoms in optical lattices and photonic devices led the field so far, but electronic quantum simulators are proving to be equally relevant. Simulating topological states of matter is one of the holy grails in the field. Here, we experimentally realize a higher-order electronic topological insulator (HOTI). Specifically, we create a dimerized Kagome lattice by manipulating carbon-monoxide (CO) molecules on a Cu(111) surface using a scanning tunneling microscope (STM). We engineer alternating weak and strong bonds to show that a topological state emerges at the corner of the non-trivial configuration, while it is absent in the trivial one. Contrarily to conventional topological insulators (TIs), the topological state has two dimensions less than the bulk, denoting a HOTI. The corner mode is protected by a generalized chiral symmetry, which leads to a particular robustness against perturbations. Our versatile approach to quantum simulation with artificial lattices holds promises of revealing unexpected quantum phases of matter.
High-order topological insulators (TIs) are a family of recently-predicted topological phases of matter obeying an extended topological bulk-boundary correspondence principle. For example, a two-dimensional (2D) second-order TI does not exhibit gaple
Itinerant electrons in a two-dimensional Kagome lattice form a Dirac semi-metal, similar to graphene. When lattice and spin symmetries are broken by various periodic perturbations this semi-metal is shown to spawn interesting non-magnetic insulating
Floquet higher order topological insulators (FHOTIs) are a novel topological phase that can occur in periodically driven lattices. An appropriate experimental platform to realize FHOTIs has not yet been identified. We introduce a periodically-driven
Square-root topological insulators are recently-proposed intriguing topological insulators, where the topologically nontrivial nature of Bloch wave functions is inherited from the square of the Hamiltonian. In this paper, we propose that higher-order
Higher-order topological insulators are newly proposed topological phases of matter, whose bulk topology manifests as localized modes at two- or higher-dimensional lower boundaries. In this work, we propose the twisted bilayer graphenes with large an