ترغب بنشر مسار تعليمي؟ اضغط هنا

Demographic Inference and Representative Population Estimates from Multilingual Social Media Data

90   0   0.0 ( 0 )
 نشر من قبل Zijian Wang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Social media provide access to behavioural data at an unprecedented scale and granularity. However, using these data to understand phenomena in a broader population is difficult due to their non-representativeness and the bias of statistical inference tools towards dominant languages and groups. While demographic attribute inference could be used to mitigate such bias, current techniques are almost entirely monolingual and fail to work in a global environment. We address these challenges by combining multilingual demographic inference with post-stratification to create a more representative population sample. To learn demographic attributes, we create a new multimodal deep neural architecture for joint classification of age, gender, and organization-status of social media users that operates in 32 languages. This method substantially outperforms current state of the art while also reducing algorithmic bias. To correct for sampling biases, we propose fully interpretable multilevel regression methods that estimate inclusion probabilities from inferred joint population counts and ground-truth population counts. In a large experiment over multilingual heterogeneous European regions, we show that our demographic inference and bias correction together allow for more accurate estimates of populations and make a significant step towards representative social sensing in downstream applications with multilingual social media.



قيم البحث

اقرأ أيضاً

252 - Giancarlo Ruffo 2021
The history of journalism and news diffusion is tightly coupled with the effort to dispel hoaxes, misinformation, propaganda, unverified rumours, poor reporting, and messages containing hate and divisions. With the explosive growth of online social m edia and billions of individuals engaged with consuming, creating, and sharing news, this ancient problem has surfaced with a renewed intensity threatening our democracies, public health, and news outlets credibility. This has triggered many researchers to develop new methods for studying, understanding, detecting, and preventing fake-news diffusion; as a consequence, thousands of scientific papers have been published in a relatively short period, making researchers of different disciplines to struggle in search of open problems and most relevant trends. The aim of this survey is threefold: first, we want to provide the researchers interested in this multidisciplinary and challenging area with a network-based analysis of the existing literature to assist them with a visual exploration of papers that can be of interest; second, we present a selection of the main results achieved so far adopting the network as an unifying framework to represent and make sense of data, to model diffusion processes, and to evaluate different debunking strategies. Finally, we present an outline of the most relevant research trends focusing on the moving target of fake-news, bots, and trolls identification by means of data mining and text technologies; despite scholars working on computational linguistics and networks traditionally belong to different scientific communities, we expect that forthcoming computational approaches to prevent fake news from polluting the social media must be developed using hybrid and up-to-date methodologies.
The ever-increasing amount of information flowing through Social Media forces the members of these networks to compete for attention and influence by relying on other people to spread their message. A large study of information propagation within Twi tter reveals that the majority of users act as passive information consumers and do not forward the content to the network. Therefore, in order for individuals to become influential they must not only obtain attention and thus be popular, but also overcome user passivity. We propose an algorithm that determines the influence and passivity of users based on their information forwarding activity. An evaluation performed with a 2.5 million user dataset shows that our influence measure is a good predictor of URL clicks, outperforming several other measures that do not explicitly take user passivity into account. We also explicitly demonstrate that high popularity does not necessarily imply high influence and vice-versa.
There has been an explosion of multimodal content generated on social media networks in the last few years, which has necessitated a deeper understanding of social media content and user behavior. We present a novel content-independent content-user-r eaction model for social multimedia content analysis. Compared to prior works that generally tackle semantic content understanding and user behavior modeling in isolation, we propose a generalized solution to these problems within a unified framework. We embed users, images and text drawn from open social media in a common multimodal geometric space, using a novel loss function designed to cope with distant and disparate modalities, and thereby enable seamless three-way retrieval. Our model not only outperforms unimodal embedding based methods on cross-modal retrieval tasks but also shows improvements stemming from jointly solving the two tasks on Twitter data. We also show that the user embeddings learned within our joint multimodal embedding model are better at predicting user interests compared to those learned with unimodal content on Instagram data. Our framework thus goes beyond the prior practice of using explicit leader-follower link information to establish affiliations by extracting implicit content-centric affiliations from isolated users. We provide qualitative results to show that the user clusters emerging from learned embeddings have consistent semantics and the ability of our model to discover fine-grained semantics from noisy and unstructured data. Our work reveals that social multimodal content is inherently multimodal and possesses a consistent structure because in social networks meaning is created through interactions between users and content.
Despite the high consumption of dietary supplements (DS), there are not many reliable, relevant, and comprehensive online resources that could satisfy information seekers. The purpose of this research study is to understand consumers information need s on DS using topic modeling and to evaluate its accuracy in correctly identifying topics from social media. We retrieved 16,095 unique questions posted on Yahoo! Answers relating to 438 unique DS ingredients mentioned in sub-section, Alternative medicine under the section, Health. We implemented an unsupervised topic modeling method, Correlation Explanation (CorEx) to unveil the various topics consumers are most interested in. We manually reviewed the keywords of all the 200 topics generated by CorEx and assigned them to 38 health-related categories, corresponding to 12 higher-level groups. We found high accuracy (90-100%) in identifying questions that correctly align with the selected topics. The results could be used to guide us to generate a more comprehensive and structured DS resource based on consumers information needs.
Many machine learning projects for new application areas involve teams of humans who label data for a particular purpose, from hiring crowdworkers to the papers authors labeling the data themselves. Such a task is quite similar to (or a form of) stru ctured content analysis, which is a longstanding methodology in the social sciences and humanities, with many established best practices. In this paper, we investigate to what extent a sample of machine learning application papers in social computing --- specifically papers from ArXiv and traditional publications performing an ML classification task on Twitter data --- give specific details about whether such best practices were followed. Our team conducted multiple rounds of structured content analysis of each paper, making determinations such as: Does the paper report who the labelers were, what their qualifications were, whether they independently labeled the same items, whether inter-rater reliability metrics were disclosed, what level of training and/or instructions were given to labelers, whether compensation for crowdworkers is disclosed, and if the training data is publicly available. We find a wide divergence in whether such practices were followed and documented. Much of machine learning research and education focuses on what is done once a gold standard of training data is available, but we discuss issues around the equally-important aspect of whether such data is reliable in the first place.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا