ترغب بنشر مسار تعليمي؟ اضغط هنا

Dashboard Mechanisms for Online Marketplaces

93   0   0.0 ( 0 )
 نشر من قبل Jason Hartline
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper gives a theoretical model for design and analysis of mechanisms for online marketplaces where a bidding dashboard enables the bid-optimization of long-lived agents. We assume that a good allocation algorithm exists when given the true values of the agents and we develop online winner-pays-bid and all-pay mechanisms that implement the same outcome of the algorithm with the aid of a bidding dashboard. The bidding dashboards that we develop work in conjunction with the mechanism to guarantee that bidding according to the dashboard is strategically equivalent (with vanishing utility difference) to bidding truthfully in the sequential truthful implementation of the allocation algorithm. Our dashboard mechanism makes only a single call to the allocation algorithm in each stage.



قيم البحث

اقرأ أيضاً

This paper combines two key ingredients for online algorithms - competitive analysis (e.g. the competitive ratio) and advice complexity (e.g. the number of advice bits needed to improve online decisions) - in the context of a simple online fair divis ion model where items arrive one by one and are allocated to agents via some mechanism. We consider four such online mechanisms: the popular Ranking matching mechanism adapted from online bipartite matching and the Like, Balanced Like and Maximum Like allocation mechanisms firstly introduced for online fair division problems. Our first contribution is that we perform a competitive analysis of these mechanisms with respect to the expected size of the matching, the utilitarian welfare, and the egalitarian welfare. We also suppose that an oracle can give a number of advice bits to the mechanisms. Our second contribution is to give several impossibility results; e.g. no mechanism can achieve the egalitarian outcome of the optimal offline mechanism supposing they receive partial advice from the oracle. Our third contribution is that we quantify the competitive performance of these four mechanisms w.r.t. the number of oracle requests they can make. We thus present a most-competitive mechanism for each objective.
Mobile crowdsensing has shown a great potential to address large-scale data sensing problems by allocating sensing tasks to pervasive mobile users. The mobile users will participate in a crowdsensing platform if they can receive satisfactory reward. In this paper, to effectively and efficiently recruit sufficient number of mobile users, i.e., participants, we investigate an optimal incentive mechanism of a crowdsensing service provider. We apply a two-stage Stackelberg game to analyze the participation level of the mobile users and the optimal incentive mechanism of the crowdsensing service provider using backward induction. In order to motivate the participants, the incentive is designed by taking into account the social network effects from the underlying mobile social domain. For example, in a crowdsensing-based road traffic information sharing application, a user can get a better and accurate traffic report if more users join and share their road information. We derive the analytical expressions for the discriminatory incentive as well as the uniform incentive mechanisms. To fit into practical scenarios, we further formulate a Bayesian Stackelberg game with incomplete information to analyze the interaction between the crowdsensing service provider and mobile users, where the social structure information (the social network effects) is uncertain. The existence and uniqueness of the Bayesian Stackelberg equilibrium are validated by identifying the best response strategies of the mobile users. Numerical results corroborate the fact that the network effects tremendously stimulate higher mobile participation level and greater revenue of the crowdsensing service provider. In addition, the social structure information helps the crowdsensing service provider to achieve greater revenue gain.
We consider agents with non-linear preferences given by private values and private budgets. We quantify the extent to which posted pricing approximately optimizes welfare and revenue for a single agent. We give a reduction framework that extends the approximation of multi-agent pricing-based mechanisms from linear utility to nonlinear utility. This reduction framework is broadly applicable as Alaei et al. (2012) have shown that mechanisms for linear agents can generally be interpreted as pricing-based mechanisms. We give example applications of the framework to oblivious posted pricing (e.g., Chawla et al., 2010), sequential posted pricing (e.g., Yan, 2011), and virtual surplus maximization (Myerson, 1981).
We study the bilateral trade problem: one seller, one buyer and a single, indivisible item for sale. It is well known that there is no fully-efficient and incentive compatible mechanism for this problem that maintains a balanced budget. We design sim ple and robust mechanisms that obtain approximate efficiency with these properties. We show that even minimal use of statistical data can yield good approximation results. Finally, we demonstrate how a mechanism for this simple bilateral-trade problem can be used as a black-box for constructing mechanisms in more general environments.
We introduce the problem of assigning resources to improve their utilization. The motivation comes from settings where agents have uncertainty about their own values for using a resource, and where it is in the interest of a group that resources be u sed and not wasted. Done in the right way, improved utilization maximizes social welfare--- balancing the utility of a high value but unreliable agent with the groups preference that resources be used. We introduce the family of contingent payment mechanisms (CP), which may charge an agent contingent on use (a penalty). A CP mechanism is parameterized by a maximum penalty, and has a dominant-strategy equilibrium. Under a set of axiomatic properties, we establish welfare-optimality for the special case CP(W), with CP instantiated for a maximum penalty equal to societal value W for utilization. CP(W) is not dominated for expected welfare by any other mechanism, and second, amongst mechanisms that always allocate the resource and have a simple indirect structure, CP(W) strictly dominates every other mechanism. The special case with no upper bound on penalty, the contingent second-price mechanism, maximizes utilization. We extend the mechanisms to assign multiple, heterogeneous resources, and present a simulation study of the welfare properties of these mechanisms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا