ترغب بنشر مسار تعليمي؟ اضغط هنا

Stability of Loday constructions

58   0   0.0 ( 0 )
 نشر من قبل Birgit Richter
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the question for which commutative ring spectra $A$ the tensor of a simplicial set $X$ with $A$, $X otimes A$, is a stable invariant in the sense that it depends only on the homotopy type of $Sigma X$. We prove several structural properties about different notions of stability, corresponding to different levels of invariance required of $Xotimes A$, and establish stability in important cases, such as complex and real periodic topological K-theory, $KU$ and $KO$.



قيم البحث

اقرأ أيضاً

We develop a spectral sequence for the homotopy groups of Loday constructions with respect to twisted products in the case where the group involved is a constant simplicial group. We show that for commutative Hopf algebra spectra Loday constructions are stable, generalizing a result by Berest, Ramadoss and Yeung. We prove that several truncated polynomial rings are not multiplicatively stable by investigating their torus homology.
We define a relative version of the Loday construction for a sequence of commutative S-algebras $A rightarrow B rightarrow C$ and a pointed simplicial subset $Y subset X$. We use this to construct several spectral sequences for the calculation of hig her topological Hochschild homology and apply those for calculations in some examples that could not be treated before.
In previous work, we develop a generalized Waldhausen $S_{bullet}$-construction whose input is an augmented stable double Segal space and whose output is a unital 2-Segal space. Here, we prove that this construction recovers the previously known $S_{ bullet}$-constructions for exact categories and for stable and exact $(infty,1)$-categories, as well as the relative $S_{bullet}$-construction for exact functors.
To compute the persistent homology of a grayscale digital image one needs to build a simplicial or cubical complex from it. For cubical complexes, the two commonly used constructions (corresponding to direct and indirect digital adjacencies) can give different results for the same image. The two constructions are almost dual to each other, and we use this relationship to extend and modify the cubical complexes to become dual filtered cell complexes. We derive a general relationship between the persistent homology of two dual filtered cell complexes, and also establish how various modifications to a filtered complex change the persistence diagram. Applying these results to images, we derive a method to transform the persistence diagram computed using one type of cubical complex into a persistence diagram for the other construction. This means software for computing persistent homology from images can now be easily adapted to produce results for either of the two cubical complex constructions without additional low-level code implementation.
Let $G=SU(2)$ and let $Omega G$ denote the space of based loops in SU(2). We explicitly compute the $R(G)$-module structure of the topological equivariant $K$-theory $K_G^*(Omega G)$ and in particular show that it is a direct product of copies of $K^ *_G(pt) cong R(G)$. (We intend to describe in detail the $R(G)$-algebra (i.e. product) structure of $K^*_G(Omega G)$ in a forthcoming companion paper.) Our proof uses the geometric methods for analyzing loop spaces introduced by Pressley and Segal (and further developed by Mitchell). However, Pressley and Segal do not explicitly compute equivariant $K$-theory and we also need further analysis of the spaces involved since we work in the equivariant setting. With this in mind, we have taken this opportunity to expand on the original exposition of Pressley-Segal in the hope that in doing so, both our results and theirs would be made accessible to a wider audience.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا