ﻻ يوجد ملخص باللغة العربية
The Planck Collaboration made its final data release in 2018. In this paper we describe beam-deconvolution map products made from Planck LFI data using the artDeco deconvolution code to symmetrize the effective beam. The deconvolution results are auxiliary data products, available through the Planck Legacy Archive. Analysis of these deconvolved survey difference maps reveals signs of residual signal in the 30-GHz and 44-GHz frequency channels. We produce low-resolution maps and corresponding noise covariance matrices (NCVMs). The NCVMs agree reasonably well with the half-ring noise estimates except for 44 GHz, where we observe an asymmetry between $EE$ and $BB$ noise spectra, possibly a sign of further unresolved systematics.
This paper is one of a series describing the performance and accuracy of map-making codes as assessed by the Planck CTP working group. We compare the performance of multiple codes written by different groups for making polarized maps from Planck-size
This paper provides an overview of the Low Frequency Instrument (LFI) programme within the ESA Planck mission. The LFI instrument has been developed to produce high precision maps of the microwave sky at frequencies in the range 27-77 GHz, below the
This paper describes the mapmaking procedure applied to Planck LFI (Low Frequency Instrument) data. The mapmaking step takes as input the calibrated timelines and pointing information. The main products are sky maps of $I,Q$, and $U$ Stokes component
In-flight measurement of the antenna main beams of the Planck instruments is a crucial input to the data analysis pipeline. We study the main beam reconstruction achievable through external planets using a flight simulator to model their observation.
We present the current estimate of instrumental and systematic effect uncertainties for the Planck-Low Frequency Instrument relevant to the first release of the Planck cosmological results. We give an overview of the main effects and of the tools and