ترغب بنشر مسار تعليمي؟ اضغط هنا

Beam-deconvolved Planck LFI maps

128   0   0.0 ( 0 )
 نشر من قبل Elina Keihanen
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Planck Collaboration made its final data release in 2018. In this paper we describe beam-deconvolution map products made from Planck LFI data using the artDeco deconvolution code to symmetrize the effective beam. The deconvolution results are auxiliary data products, available through the Planck Legacy Archive. Analysis of these deconvolved survey difference maps reveals signs of residual signal in the 30-GHz and 44-GHz frequency channels. We produce low-resolution maps and corresponding noise covariance matrices (NCVMs). The NCVMs agree reasonably well with the half-ring noise estimates except for 44 GHz, where we observe an asymmetry between $EE$ and $BB$ noise spectra, possibly a sign of further unresolved systematics.



قيم البحث

اقرأ أيضاً

This paper is one of a series describing the performance and accuracy of map-making codes as assessed by the Planck CTP working group. We compare the performance of multiple codes written by different groups for making polarized maps from Planck-size d, all-sky cosmic microwave background (CMB) data. Three of the codes are based on destriping algorithm, whereas the other three are implementations of a maximum-likelihood algorithm. Previous papers in the series described simulations at 100 GHz (Poutanen et al. 2006) and 217 GHz (Ashdown et al. 2006). In this paper we make maps (temperature and polarisation) from the simulated one-year observations of four 30 GHz detectors of Planck Low Frequency Instrument (LFI). We used Planck Level S simulation pipeline to produce the observed time-ordered-data streams (TOD). Our previous studies considered polarisation observations for the CMB only. For this paper we increased the realism of the simulations and included polarized galactic foregrounds to our sky model. Our simulated TODs comprised of dipole, CMB, diffuse galactic emissions, extragalactic radio sources, and detector noise. The strong subpixel signal gradients arising from the foreground signals couple to the output map through the map-making and cause an error (signal error) in the maps. Destriping codes have smaller signal error than the maximum-likelihood codes. We examined a number of schemes to reduce this error. On the other hand, the maximum-likelihood map-making codes can produce maps with lower residual noise than destriping codes.
This paper provides an overview of the Low Frequency Instrument (LFI) programme within the ESA Planck mission. The LFI instrument has been developed to produce high precision maps of the microwave sky at frequencies in the range 27-77 GHz, below the peak of the cosmic microwave background (CMB) radiation spectrum. The scientific goals are described, ranging from fundamental cosmology to Galactic and extragalactic astrophysics. The instrument design and development are outlined, together with the model philosophy and testing strategy. The instrument is presented in the context of the Planck mission. The LFI approach to ground and inflight calibration is described. We also describe the LFI ground segment. We present the results of a number of tests demonstrating the capability of the LFI data processing centre (DPC) to properly reduce and analyse LFI flight data, from telemetry information to calibrated and cleaned time ordered data, sky maps at each frequency (in temperature and polarization), component emission maps (CMB and diffuse foregrounds), catalogs for various classes of sources (the Early Release Compact Source Catalogue and the Final Compact Source Catalogue). The organization of the LFI consortium is briefly presented as well as the role of the core team in data analysis and scientific exploitation. All tests carried out on the LFI flight model demonstrate the excellent performance of the instrument and its various subunits. The data analysis pipeline has been tested and its main steps verified. In the first three months after launch, the commissioning, calibration, performance, and verification phases will be completed, after which Planck will begin its operational life, in which LFI will have an integral part.
This paper describes the mapmaking procedure applied to Planck LFI (Low Frequency Instrument) data. The mapmaking step takes as input the calibrated timelines and pointing information. The main products are sky maps of $I,Q$, and $U$ Stokes component s. For the first time, we present polarization maps at LFI frequencies. The mapmaking algorithm is based on a destriping technique, enhanced with a noise prior. The Galactic region is masked to reduce errors arising from bandpass mismatch and high signal gradients. We apply horn-uniform radiometer weights to reduce effects of beam shape mismatch. The algorithm is the same as used for the 2013 release, apart from small changes in parameter settings. We validate the procedure through simulations. Special emphasis is put on the control of systematics, which is particularly important for accurate polarization analysis. We also produce low-resoluti
In-flight measurement of the antenna main beams of the Planck instruments is a crucial input to the data analysis pipeline. We study the main beam reconstruction achievable through external planets using a flight simulator to model their observation. We restrict our analysis to the 30 GHz LFI channel but the method can be easily extended to higher frequency channels. We show that it is possible to fit the antenna response from Jupiter and Saturn to obtain an accurate, robust, simple and fast reconstruction of the main beam properties under very general conditions, independently of the calibration accuracy. In addition, we find that a bivariate Gaussian approximation of the main beam shapes represents a significant improvement with respect to a symmetric representation. We also show that it is possible to combine the detection of the planets transit and Plancks very accurate in-flight calibration to measure the planets temperature at millimetric wavelengths with an accuracy at the % level. This work is based on Planck-LFI activities.
We present the current estimate of instrumental and systematic effect uncertainties for the Planck-Low Frequency Instrument relevant to the first release of the Planck cosmological results. We give an overview of the main effects and of the tools and methods applied to assess residuals in maps and power spectra. We also present an overall budget of known systematic effect uncertainties, which are dominated sidelobe straylight pick-up and imperfect calibration. However, even these two effects are at least two orders of magnitude weaker than the cosmic microwave background (CMB) fluctuations as measured in terms of the angular temperature power spectrum. A residual signal above the noise level is present in the multipole range $ell<20$, most notably at 30 GHz, and is likely caused by residual Galactic straylight contamination. Current analysis aims to further reduce the level of spurious signals in the data and to improve the systematic effects modelling, in particular with respect to straylight and calibration uncertainties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا