ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular Electronics: From Single-Molecule to Large-Area Devices

62   0   0.0 ( 0 )
 نشر من قبل Dominique Vuillaume
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This mini review focuses on conductance measurements through molecular junctions containing few tens of molecules, which are fabricated along two approaches: (i) conducting atomic force microscope contacting a self-assembled monolayers on metal surface, and (ii) tiny molecular junctions made of metal nanodot (diameter < 10 nm), covered by fewer than 100 molecules and contacted by a conducting atomic force microscope. In particular, this latter approach has allowed to obtain new results or to revisit previous ones, which are reviewed here: (i) how the electron transport properties of molecular junctions are modified by mechanical constraint, (ii) the role of intermolecular interactions on the shape of conductance histograms of molecular junctions, and (iii) the demonstration that a molecular diode can operate in the microwave regime up to 18 GHz.



قيم البحث

اقرأ أيضاً

Proton radiation damage is an important failure mechanism for electronic devices in near-Earth orbits, deep space and high energy physics facilities. Protons can cause ionizing damage and atomic displacements, resulting in device degradation and malf unction. Shielding of electronics increases the weight and cost of the systems but does not eliminate destructive single events produced by energetic protons. Modern electronics based on semiconductors - even those specially designed for radiation hardness - remain highly susceptible to proton damage. Here we demonstrate that room temperature (RT) charge-density-wave (CDW) devices with quasi-two-dimensional (2D) 1T-TaS2 channels show remarkable immunity to bombardment with 1.8 MeV protons to a fluence of at least 10^14 H+cm^2. Current-voltage I-V characteristics of these 2D CDW devices do not change as a result of proton irradiation, in striking contrast to most conventional semiconductor devices or other 2D devices. Only negligible changes are found in the low-frequency noise spectra. The radiation immunity of these all-metallic CDW devices can be attributed to their two-terminal design, quasi-2D nature of the active channel, and high concentration of charge carriers in the utilized CDW phases. Such devices, capable of operating over a wide temperature range, can constitute a crucial segment of future electronics for space, particle accelerator and other radiation environments.
56 - Ashwin Gopinath 2018
DNA origami is a modular platform for the combination of molecular and colloidal components to create optical, electronic, and biological devices. Integration of such nanoscale devices with microfabricated connectors and circuits is challenging: larg e numbers of freely diffusing devices must be fixed at desired locations with desired alignment. We present a DNA origami molecule whose energy landscape on lithographic binding sites has a unique maximum. This property enables device alignment within 3.2$^{circ}$ on SiO$_2$. Orientation is absolute (all degrees of freedom are specified) and arbitrary (every molecules orientation is independently specified). The use of orientation to optimize device performance is shown by aligning fluorescent emission dipoles within microfabricated optical cavities. Large-scale integration is demonstrated via an array of 3,456 DNA origami with 12 distinct orientations, which indicates the polarization of excitation light.
Two-dimensional transition metal dichalcogenides (TMDs) represent an ideal testbench for the search of materials by design, because their optoelectronic properties can be manipulated through surface engineering and molecular functionalization. Howeve r, the impact of molecules on intrinsic physical properties of TMDs, such as superconductivity, remains largely unexplored. In this work, the critical temperature (TC) of large-area NbSe2 monolayers is manipulated, employing ultrathin molecular adlayers. Spectroscopic evidence indicates that aligned molecular dipoles within the self-assembled layers act as a fixed gate terminal, collectively generating a macroscopic electrostatic field on NbSe2. This results in an sim 55% increase and a 70% decrease in TC depending on the electric field polarity, which is controlled via molecular selection. The reported functionalization, which improves the air stability of NbSe2, is efficient, practical, up-scalable, and suited to functionalize large-area TMDs. Our results indicate the potential of hybrid 2D materials as a novel platform for tunable superconductivity.
Molecules with versatile functionalities and well-defined structures, can serve as building blocks for extreme nanoscale devices. This requires their precise integration into functional heterojunctions, most commonly in the form of metal-molecule-met al architectures. Structural damage and nonuniformities caused by current fabrication techniques, however, limit their effective incorporation. Here, we present a hybrid fabrication approach enabling uniform molecular gaps. Template-stripped lithographically-patterned gold electrodes with sub-nanometer roughness are used as the bottom contacts upon which the molecular layer is formed through self-assembly. The top contacts are assembled using dielectrophoretic trapping of colloidal gold nanorods, resulting in uniform sub-5 nm junctions. In these electrically-active designs, we further explore the possibility of mechanical tunability. The presence of molecules may help control sub-nanometer mechanical modulation which is conventionally difficult to achieve due to instabilities caused by surface adhesive forces. Our approach is versatile, providing a platform to develop and study active molecular gaps towards functional nanodevices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا