ﻻ يوجد ملخص باللغة العربية
This paper proposes a fractional order gradient method for the backward propagation of convolutional neural networks. To overcome the problem that fractional order gradient method cannot converge to real extreme point, a simplified fractional order gradient method is designed based on Caputos definition. The parameters within layers are updated by the designed gradient method, but the propagations between layers still use integer order gradients, and thus the complicated derivatives of composite functions are avoided and the chain rule will be kept. By connecting every layers in series and adding loss functions, the proposed convolutional neural networks can be trained smoothly according to various tasks. Some practical experiments are carried out in order to demonstrate fast convergence, high accuracy and ability to escape local optimal point at last.
In this paper, we give some new thoughts about the classical gradient method (GM) and recall the proposed fractional order gradient method (FOGM). It is proven that the proposed FOGM holds a super convergence capacity and a faster convergence rate ar
Deep learning frameworks leverage GPUs to perform massively-parallel computations over batches of many training examples efficiently. However, for certain tasks, one may be interested in performing per-example computations, for instance using per-exa
The past few years have witnessed the fast development of different regularization methods for deep learning models such as fully-connected deep neural networks (DNNs) and Convolutional Neural Networks (CNNs). Most of previous methods mainly consider
This paper focuses on the convergence problem of the emerging fractional order gradient descent method, and proposes three solutions to overcome the problem. In fact, the general fractional gradient method cannot converge to the real extreme point of
We introduce an automated tool for deploying ultra low-latency, low-power deep neural networks with convolutional layers on FPGAs. By extending the hls4ml library, we demonstrate an inference latency of $5,mu$s using convolutional architectures, targ