ﻻ يوجد ملخص باللغة العربية
We initiate the representation theory of the degenerate affine periplectic Brauer algebra on $n$ strands by constructing its finite-dimensional calibrated representations when $n=2$. We show that any such representation that is indecomposable and does not factor through a representation of the degenerate affine Hecke algebra occurs as an extension of two semisimple representations with one-dimensional composition factors; and furthermore, we classify such representations with regular eigenvalues up to isomorphism.
Inspired by the work [Ra1], we directly give a complete classification of irreducible calibrated representations of affine Yokonuma-Hecke algebras $widehat{Y}_{r,n}(q)$ over $mathbb{C},$ which are indexed by $r$-tuples of placed skew shapes. We then
We present an algebra related to the Coxeter group of type F4 which can be viewed as the Brauer algebra of type F4 and is obtained as a subalgebra of the Brauer algebra of type E6. We also describe some properties of this algebra.
Let $A$ be the locally unital algebra associated to a cyclotomic oriented Brauer category over an arbitrary algebraically closed field $Bbbk$ of characteristic $pge 0$. The category of locally finite dimensional representations of $A $ is used to giv
The article is a contribution to the local theory of geometric Langlands correspondence. The main result is a categorification of the isomorphism between the (extended) affine Hecke algebra, thought of as an algebra of Iwahori bi-invariant functions
We introduce an infinite-dimensional $p$-adic affine group and construct its irreducible unitary representation. Our approach follows the one used by Vershik, Gelfand and Graev for the diffeomorphism group, but with modifications made necessary by th