ﻻ يوجد ملخص باللغة العربية
In order to address the issue that medical image would suffer from severe blurring caused by the lack of high-frequency details in the process of image super-resolution reconstruction, a novel medical image super-resolution method based on dense neural network and blended attention mechanism is proposed. The proposed method adds blended attention blocks to dense neural network(DenseNet), so that the neural network can concentrate more attention to the regions and channels with sufficient high-frequency details. Batch normalization layers are removed to avoid loss of high-frequency texture details. Final obtained high resolution medical image are obtained using deconvolutional layers at the very end of the network as up-sampling operators. Experimental results show that the proposed method has an improvement of 0.05db to 11.25dB and 0.6% to 14.04% on the peak signal-to-noise ratio(PSNR) metric and structural similarity index(SSIM) metric, respectively, compared with the mainstream image super-resolution methods. This work provides a new idea for theoretical studies of medical image super-resolution reconstruction.
During training phase, more connections (e.g. channel concatenation in last layer of DenseNet) means more occupied GPU memory and lower GPU utilization, requiring more training time. The increase of training time is also not conducive to launch appli
Convolutional neural networks have allowed remarkable advances in single image super-resolution (SISR) over the last decade. Among recent advances in SISR, attention mechanisms are crucial for high-performance SR models. However, the attention mechan
A very deep convolutional neural network (CNN) has recently achieved great success for image super-resolution (SR) and offered hierarchical features as well. However, most deep CNN based SR models do not make full use of the hierarchical features fro
This paper proposes a novel Attention-based Multi-Reference Super-resolution network (AMRSR) that, given a low-resolution image, learns to adaptively transfer the most similar texture from multiple reference images to the super-resolution output whil
Recently, deep convolutional neural networks (CNNs) have obtained promising results in image processing tasks including super-resolution (SR). However, most CNN-based SR methods treat low-resolution (LR) inputs and features equally across channels, r