ﻻ يوجد ملخص باللغة العربية
Until recently, uncertainty quantification in low energy nuclear theory was typically performed using frequentist approaches. However in the last few years, the field has shifted toward Bayesian statistics for evaluating confidence intervals. Although there are statistical arguments to prefer the Bayesian approach, no direct comparison is available. In this work, we compare, directly and systematically, the frequentist and Bayesian approaches to quantifying uncertainties in direct nuclear reactions. Starting from identical initial assumptions, we determine confidence intervals associated with the elastic and the transfer process for both methods, which are evaluated against data via a comparison of the empirical coverage probabilities. Expectedly, the frequentist approach is not as flexible as the Bayesian approach in exploring parameter space and often ends up in a different minimum. We also show that the two methods produce significantly different correlations. In the end, the frequentist approach produces significantly narrower uncertainties on the considered observables than the Bayesian. Our study demonstrates that the uncertainties on the reaction observables considered here within the Bayesian approach represent reality more accurately than the much narrower uncertainties obtained using the standard frequentist approach.
Within a Bayesian statistical framework using the standard Skyrme-Hartree-Fcok model, the maximum a posteriori (MAP) values and uncertainties of nuclear matter incompressibility and isovector interaction parameters are inferred from the experimental
The uncertainty quantifications of theoretical results are of great importance to make meaningful comparisons of those results with experimental data and to make predictions in experimentally unknown regions. By quantifying uncertainties, one can mak
Nuclear density functional theory (DFT) is one of the main theoretical tools used to study the properties of heavy and superheavy elements, or to describe the structure of nuclei far from stability. While on-going efforts seek to better root nuclear
Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models; to estimate model errors and thereby improve predictive capability; to extrapolate b
This work affords new insights into Bayesian CART in the context of structured wavelet shrinkage. The main thrust is to develop a formal inferential framework for Bayesian tree-based regression. We reframe Bayesian CART as a g-type prior which depart