ﻻ يوجد ملخص باللغة العربية
We use queueing networks to present a new approach to solving Laplacian systems. This marks a significant departure from the existing techniques, mostly based on graph-theoretic constructions and sampling. Our distributed solver works for a large and important class of Laplacian systems that we call one-sink Laplacian systems. Specifically, our solver can produce solutions for systems of the form $Lx = b$ where exactly one of the coordinates of $b$ is negative. Our solver is a distributed algorithm that takes $widetilde{O}(t_{hit} d_{max})$ time (where $widetilde{O}$ hides $text{poly}log n$ factors) to produce an approximate solution where $t_{hit}$ is the worst-case hitting time of the random walk on the graph, which is $Theta(n)$ for a large set of important graphs, and $d_{max}$ is the generalized maximum degree of the graph. The class of one-sink Laplacians includes the important voltage computation problem and allows us to compute the effective resistance between nodes in a distributed setting. As a result, our Laplacian solver can be used to adapt the approach by Kelner and Mk{a}dry (2009) to give the first distributed algorithm to compute approximate random spanning trees efficiently.
We present a novel self-stabilizing algorithm for minimum spanning tree (MST) construction. The space complexity of our solution is $O(log^2n)$ bits and it converges in $O(n^2)$ rounds. Thus, this algorithm improves the convergence time of all previo
A distributed proof (also known as local certification, or proof-labeling scheme) is a mechanism to certify that the solution to a graph problem is correct. It takes the form of an assignment of labels to the nodes, that can be checked locally. There
In this paper, we develop a novel weighted Laplacian method, which is partially inspired by the theory of graph Laplacian, to study recent popular graph problems, such as multilevel graph partitioning and balanced minimum cut problem, in a more conve
We describe here a structured system for distributed mechanism design appropriate for both Intranet and Internet applications. In our approach the players dynamically form a network in which they know neither their neighbours nor the size of the netw
In this paper, we study systems of distributed entities that can actively modify their communication network. This gives rise to distributed algorithms that apart from communication can also exploit network reconfiguration in order to carry out a giv