ترغب بنشر مسار تعليمي؟ اضغط هنا

A Distributed Laplacian Solver and its Applications to Electrical Flow and Random Spanning Tree Computation

114   0   0.0 ( 0 )
 نشر من قبل Iqra Altaf Gillani
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We use queueing networks to present a new approach to solving Laplacian systems. This marks a significant departure from the existing techniques, mostly based on graph-theoretic constructions and sampling. Our distributed solver works for a large and important class of Laplacian systems that we call one-sink Laplacian systems. Specifically, our solver can produce solutions for systems of the form $Lx = b$ where exactly one of the coordinates of $b$ is negative. Our solver is a distributed algorithm that takes $widetilde{O}(t_{hit} d_{max})$ time (where $widetilde{O}$ hides $text{poly}log n$ factors) to produce an approximate solution where $t_{hit}$ is the worst-case hitting time of the random walk on the graph, which is $Theta(n)$ for a large set of important graphs, and $d_{max}$ is the generalized maximum degree of the graph. The class of one-sink Laplacians includes the important voltage computation problem and allows us to compute the effective resistance between nodes in a distributed setting. As a result, our Laplacian solver can be used to adapt the approach by Kelner and Mk{a}dry (2009) to give the first distributed algorithm to compute approximate random spanning trees efficiently.



قيم البحث

اقرأ أيضاً

We present a novel self-stabilizing algorithm for minimum spanning tree (MST) construction. The space complexity of our solution is $O(log^2n)$ bits and it converges in $O(n^2)$ rounds. Thus, this algorithm improves the convergence time of all previo usly known self-stabilizing asynchronous MST algorithms by a multiplicative factor $Theta(n)$, to the price of increasing the best known space complexity by a factor $O(log n)$. The main ingredient used in our algorithm is the design, for the first time in self-stabilizing settings, of a labeling scheme for computing the nearest common ancestor with only $O(log^2n)$ bits.
131 - Laurent Feuilloley 2019
A distributed proof (also known as local certification, or proof-labeling scheme) is a mechanism to certify that the solution to a graph problem is correct. It takes the form of an assignment of labels to the nodes, that can be checked locally. There exists such a proof for the minimum spanning tree problem, using $O(log n log W)$ bit labels (where $n$ is the number of nodes in the graph, and $W$ is the largest weight of an edge). This is due to Korman and Kutten who describe it in concise and formal manner in [Korman and Kutten 07]. In this note, we propose a more intuitive description of the result, as well as a gentle introduction to the problem.
In this paper, we develop a novel weighted Laplacian method, which is partially inspired by the theory of graph Laplacian, to study recent popular graph problems, such as multilevel graph partitioning and balanced minimum cut problem, in a more conve nient manner. Since the weighted Laplacian strategy inherits the virtues of spectral methods, graph algorithms designed using weighted Laplacian will necessarily possess more robust theoretical guarantees for algorithmic performances, comparing with those existing algorithms that are heuristically proposed. In order to illustrate its powerful utility both in theory and in practice, we also present two effective applications of our weighted Laplacian method to multilevel graph partitioning and balanced minimum cut problem, respectively. By means of variational methods and theory of partial differential equations (PDEs), we have established the equivalence relations among the weighted cut problem, balanced minimum cut problem and the initial clustering problem that arises in the middle stage of graph partitioning algorithms under a multilevel structure. These equivalence relations can indeed provide solid theoretical support for algorithms based on our proposed weighted Laplacian strategy. Moreover, from the perspective of the application to the balanced minimum cut problem, weighted Laplacian can make it possible for research of numerical solutions of PDEs to be a powerful tool for the algorithmic study of graph problems. Experimental results also indicate that the algorithm embedded with our strategy indeed outperforms other existing graph algorithms, especially in terms of accuracy, thus verifying the efficacy of the proposed weighted Laplacian.
We describe here a structured system for distributed mechanism design appropriate for both Intranet and Internet applications. In our approach the players dynamically form a network in which they know neither their neighbours nor the size of the netw ork and interact to jointly take decisions. The only assumption concerning the underlying communication layer is that for each pair of processes there is a path of neighbours connecting them. This allows us to deal with arbitrary network topologies. We also discuss the implementation of this system which consists of a sequence of layers. The lower layers deal with the operations that implement the basic primitives of distributed computing, namely low level communication and distributed termination, while the upper layers use these primitives to implement high level communication among players, including broadcasting and multicasting, and distributed decision making. This yields a highly flexible distributed system whose specific applications are realized as instances of its top layer. This design is implemented in Java. The system supports at various levels fault-tolerance and includes a provision for distributed policing the purpose of which is to exclude `dishonest players. Also, it can be used for repeated creation of dynamically formed networks of players interested in a joint decision making implemented by means of a tax-based mechanism. We illustrate its flexibility by discussing a number of implemented examples.
In this paper, we study systems of distributed entities that can actively modify their communication network. This gives rise to distributed algorithms that apart from communication can also exploit network reconfiguration in order to carry out a giv en task. At the same time, the distributed task itself may now require global reconfiguration from a given initial network $G_s$ to a target network $G_f$ from a family of networks having some good properties, like small diameter. With reasonably powerful computational entities, there is a straightforward algorithm that transforms any $G_s$ into a spanning clique in $O(log n)$ time. The algorithm can then compute any global function on inputs and reconfigure to any target network in one round. We argue that such a strategy is impractical for real applications. In real dynamic networks there is a cost associated with creating and maintaining connections. To formally capture such costs, we define three edge-complexity measures: the emph{total edge activations}, the emph{maximum activated edges per round}, and the emph{maximum activated degree of a node}. The clique formation strategy highlighted above, maximizes all of them. We aim at improved algorithms that achieve (poly)log$(n)$ time while minimizing the edge-complexity for the general task of transforming any $G_s$ into a $G_f$ of diameter (poly)log$(n)$. We give three distributed algorithms. The first runs in $O(log n)$ time, with at most $2n$ active edges per round, an optimal total of $O(nlog n)$ edge activations, a maximum degree $n-1$, and a target network of diameter 2. The second achieves bounded degree by paying an additional logarithmic factor in time and in total edge activations and gives a target network of diameter $O(log n)$. Our third algorithm shows that if we slightly increase the maximum degree to polylog$(n)$ then we can achieve a running time of $o(log^2 n)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا