Genuine quantum nonlocality in the triangle network


الملخص بالإنكليزية

Quantum networks allow in principle for completely novel forms of quantum correlations. In particular, quantum nonlocality can be demonstrated here without the need of having various input settings, but only by considering the joint statistics of fixed local measurement outputs. However, previous examples of this intriguing phenomenon all appear to stem directly from the usual form of quantum nonlocality, namely via the violation of a standard Bell inequality. Here we present novel examples of quantum nonlocality without inputs, which we believe represent a new form of quantum nonlocality, genuine to networks. Our simplest examples, for the triangle network, involve both entangled states and joint entangled measurements. A generalization to any odd-cycle network is also presented. Finally, we conclude with some open questions.

تحميل البحث