ﻻ يوجد ملخص باللغة العربية
The precipitation of a glass forming solute from solution is modelled using a lattice model previously introduced to study dissolution kinetics of amorphous materials. The model includes the enhancement of kinetics at the surface of a glass in contact with a plasticizing solvent. We demonstrate that precipitation can produce a glass substantially more stable than that produced by very long time annealing of the bulk glass former. The energy of these ultra-stable amorphous precipitates is found to be dominated by residual solvent rather than high energy glass configurations.
The temperature dependence of the thermal conductivity of amorphous solids is markedly different from that of their crystalline counterparts, but exhibits universal behaviour. Sound attenuation is believed to be related to this universal behaviour. R
In this brief note we comment on the recent results presented in arXiv:1812.08736v1
We numerically study the evolution of the vibrational density of states $D(omega)$ of zero-temperature glasses when their kinetic stability is varied over an extremely broad range, ranging from poorly annealed glasses obtained by instantaneous quench
We investigate the thermalization of a two-component scalar field across a second-order phase transition under extremely fast quenches. We find that vortices start developing at the final temperature of the quench, i.e., below the critical point. Spe
The history dependence of the glasses formed from flow-melted steady states by a sudden cessation of the shear rate $dotgamma$ is studied in colloidal suspensions, by molecular dynamics simulations, and mode-coupling theory. In an ideal glass, stress