ترغب بنشر مسار تعليمي؟ اضغط هنا

T1rho Fractional-order Relaxation of Human Articular Cartilage

359   0   0.0 ( 0 )
 نشر من قبل Lixian Zou
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

T1rho imaging is a promising non-invasive diagnostic tool for early detection of articular cartilage degeneration. A mono-exponential model is normally used to describe the T1rho relaxation process. However, mono-exponentials may not adequately to describe NMR relaxation in complex, heterogeneous, and anisotropic materials, such as articular cartilage. Fractional-order models have been used successfully to describe complex relaxation phenomena in the laboratory frame in cartilage matrix components. In this paper, we develop a time-fractional order (T-FACT) model for T1rho fitting in human articular cartilage. Representative results demonstrate that the proposed method is able to fit the experimental data with smaller root mean squared error than the one from conventional mono-exponential relaxation model in human articular cartilage.



قيم البحث

اقرأ أيضاً

The 3D morphology and quantitative assessment of knee articular cartilages (i.e., femoral, tibial, and patellar cartilage) in magnetic resonance (MR) imaging is of great importance for knee radiographic osteoarthritis (OA) diagnostic decision making. However, effective and efficient delineation of all the knee articular cartilages in large-sized and high-resolution 3D MR knee data is still an open challenge. In this paper, we propose a novel framework to solve the MR knee cartilage segmentation task. The key contribution is the adversarial learning based collaborative multi-agent segmentation network. In the proposed network, we use three parallel segmentation agents to label cartilages in their respective region of interest (ROI), and then fuse the three cartilages by a novel ROI-fusion layer. The collaborative learning is driven by an adversarial sub-network. The ROI-fusion layer not only fuses the individual cartilages from multiple agents, but also backpropagates the training loss from the adversarial sub-network to each agent to enable joint learning of shape and spatial constraints. Extensive evaluations are conducted on a dataset including hundreds of MR knee volumes with diverse populations, and the proposed method shows superior performance.
We present a model of articular cartilage lesion formation to simulate the effects of cyclic loading. This model extends and modifies the reaction-diffusion-delay model by Graham et al. 2012 for the spread of a lesion formed though a single traumatic event. Our model represents implicitly the effects of loading, meaning through a cyclic sink term in the equations for live cells. Our model forms the basis for in silico studies of cartilage damage relevant to questions in osteoarthritis, for example, that may not be easily answered through in vivo or in vitro studies. Computational results are presented that indicate the impact of differing levels of EPO on articular cartilage lesion abatement.
A severe application of stress on articular cartilage can initiate a cascade of biochemical reactions that can lead to the development of osteoarthritis. We constructed a multiscale mathematical model of the process with three components: cellular, c hemical, and mechanical. The cellular component describes the different chondrocyte states according to the chemicals these cells release. The chemical component models the change in concentrations of those chemicals. The mechanical component contains a simulation of pressure application onto a cartilage explant and the resulting strains that initiate the biochemical processes. The model creates a framework for incorporating explicit mechanics, simulated by finite element analysis, into a theoretical biology framework.
Injuries to articular cartilage result in the development of lesions that form on the surface of the cartilage. Such lesions are associated with articular cartilage degeneration and osteoarthritis. The typical injury response often causes collateral damage, primarily an effect of inflammation, which results in the spread of lesions beyond the region where the initial injury occurs. We present a minimal mathematical model based on known mechanisms to investigate the spread and abatement of such lesions. In particular we represent the balancing act between pro-inflammatory and anti-inflammatory cytokines that is hypothesized to be a principal mechanism in the expansion properties of cartilage damage during the typical injury response. We present preliminary results of in vitro studies that confirm the anti-inflammatory activities of the cytokine erythropoietin (EPO). We assume that the diffusion of cytokines determine the spatial behaviour of injury response and lesion expansion so that a reaction-diffusion system involving chemical species and chondrocyte cell state population densities is a natural way to represent cartilage injury response. We present computational results using the mathematical model showing that our representation is successful in capturing much of the interesting spatial behaviour of injury associated lesion development and abatement in articular cartilage. Further, we discuss the use of this model to study the possibility of using EPO as a therapy for reducing the amount of inflammation induced collateral damage to cartilage during the typical injury response. The mathematical model presented herein suggests that not only are anti-inflammatory cytokines, such as EPO necessary to prevent chondrocytes signaled by pro-inflammatory cytokines from entering apoptosis, they may also influence how chondrocytes respond to signaling by pro-inflammatory cytokines.
Magnetic resonance fingerprinting (MRF) is one novel fast quantitative imaging framework for simultaneous quantification of multiple parameters with pseudo-randomized acquisition patterns. The accuracy of the resulting multi-parameters is very import ant for clinical applications. In this paper, we derived signal evolutions from the anomalous relaxation using a fractional calculus. More specifically, we utilized time-fractional order extension of the Bloch equations to generate dictionary to provide more complex system descriptions for MRF applications. The representative results of phantom experiments demonstrated the good accuracy performance when applying the time-fractional order Bloch equations to generate dictionary entries in the MRF framework. The utility of the proposed method is also validated by in-vivo study.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا