ﻻ يوجد ملخص باللغة العربية
Photoelectron Angular Distributions (PADs) resulting from 800 nm and 1300 nm strong field ionization of impulsively aligned CF$_3$I molecules were analyzed using time-dependent density functional theory (TDDFT). The normalized difference between the PADs for aligned and anti-aligned molecules displays large modulations in the high-energy re-collision plateau that are assigned to the diffraction of back-scattered photoelectrons. The TDDFT calculations reveal that, in spite of their 2.6 eV energy difference, ionization from the HOMO-1 orbital contributes to the diffraction pattern on the same footing as ionization from the doubly degenerate HOMO orbital.
Laser-induced electron diffraction is an evolving tabletop method, which aims to image ultrafast structural changes in gas-phase polyatomic molecules with sub-{AA}ngstrom spatial and femtosecond temporal resolution. Here, we provide the general found
Visualizing molecular transformations in real-time requires a structural retrieval method with {AA}ngstrom spatial and femtosecond temporal atomic resolution. Imaging of hydrogen-containing molecules additionally requires an imaging method that is se
We explore the laser-induced ionization dynamics of N2 and CO2 molecules subjected to a few-cycle, linearly polarized, 800,nm laser pulse using effective two-dimensional single active electron time-dependent quantum simulations. We show that the elec
Structural information on electronically excited neutral molecules can be indirectly retrieved, largely through pump-probe and rotational spectroscopy measurements with the aid of calculations. Here, we demonstrate the direct structural retrieval of
In this paper, we discuss the possibility of imaging molecular orbitals from photoelectron spectra obtained via Laser Induced Electron Diffraction (LIED) in linear molecules. This is an extension of our work published recently in Physical Review A te