ﻻ يوجد ملخص باللغة العربية
We investigate ferrimagnetic domain wall dynamics induced by circularly polarized spin waves theoretically and numerically. We find that the direction of domain wall motion depends on both the circular polarization of spin waves and the sign of net spin density of ferrimagnet. Below the angular momentum compensation point, left- (right-) circularly polarized spin waves push a domain wall towards (away from) the spin-wave source. Above the angular momentum compensation point, on the other hand, the direction of domain wall motion is reversed. This bidirectional motion originates from the fact that the sign of spin-wave-induced magnonic torque depends on the circular polarization and the subsequent response of the domain wall to the magnonic torque is governed by the net spin density. Our finding provides a way to utilize a spin wave as a versatile driving force for bidirectional domain wall motion.
Antiferromagnetic materials are outstanding candidates for next generation spintronic applications, because their ultrafast spin dynamics makes it possible to realize several orders of magnitude higher-speed devices than conventional ferromagnetic ma
One fundamental obstacle to efficient ferromagnetic spintronics is magnetic precession, which intrinsically limits the dynamics of magnetic textures, We demonstrate that the domain wall precession fully vanishes with a record mobility when the net an
In easy-plane ferromagnets, all magnetic dynamics are restricted in a specific plane, and the domain wall becomes massive instead of gyroscopic. Here we show that the interaction between domain wall and spin wave packet in easy-plane ferromagnets tak
Active manipulation of spin waves is essential for the development of magnon-based technologies. Here, we demonstrate programmable spin-wave filtering by resetting the spin structure of a pinned 90$^circ$ N{e}el domain wall in a continuous CoFeB film
We investigated the aspect ratio (thickness/width) dependence of the threshold current density required for the current-driven domain wall (DW) motion for the Ni81Fe19 nanowires. It has been shown theoretically that the threshold current density is p