ﻻ يوجد ملخص باللغة العربية
We report the first detailed investigation of K$_2$MnS$_2$ and K$_2$MnSe$_2$ from the K$_2$MnS$_2$ structure type and their magnetic solid solution K$_2$MnS$_{2-x}$Se$_x$ and find that compounds of this structure type consist of strongly-coupled pseudo-one-dimensional antiferromagnetic chains that collectively represent a frustrated two-dimensional triangular antiferromagnet. Bulk samples of K$_2$MnS$_{2-x}$Se$_x$ with $0 leq x leq 2$ are characterized using X-ray diffraction, neutron diffraction, magnetization and heat capacity measurements. An incommensurate cycloid magnetic structure with a magnetic propagation vector $k = [0.58~0~1]$ is observed for all samples in K$_2$MnS$_{2-x}$Se$_x$, and the ordering is robust despite a 12% increase in cell volume. Geometric frustration of chains results in incommensurability along $a$ and a two-step magnetic transition. The varying geometries accessible in compounds of this structure type are presented as promising avenues to tune frustration.
We report thermodynamic properties, magnetic ground state, and microscopic magnetic model of the spin-1 frustrated antiferromaget Li$_{2}$NiW$_{2}$O$_{8}$ showing successive transitions at $T_{rm N1}simeq 18$ K and $T_{rm N2}simeq 12.5$ K in zero fie
The Raman spectroscopy and AC and DC magnetization of Dy$_{2-x}$Eu$_x$Ti$_2$O$_7$ have been investigated. In Raman Spectroscopy, the systematic shift in all phonon modes with Eu content in Dy$_{2-x}$Eu$_x$Ti$_2$O$_7$ confirms that Dy$^{3+}$ ion is su
The layered {beta}-NaMnO2, a promising Na-ion energy-storage material has been investigated for its triangular lattice capability to promote complex magnetic configurations that may release symmetry restrictions for the coexistence of ferroelectric a
The triangular lattice compound TlYbS$_2$ was prepared as large single crystals via a molten flux growth technique using sodium chloride. Anisotropic magnetic susceptibility measurements down to 0.4 K indicate a complete absence of long-range magneti
We have systematically studied the magnetic properties of chromium chalcogene compounds FeCr$_2$Se$_{4-x}$Te$_x$. The FeCr2Se4 undergoes antiferromagnetic ordering below 222 K. Substitution of tellurium lowers the antiferromagnetic ordering temperatu