ﻻ يوجد ملخص باللغة العربية
Let $G$ be a finite $p$-group and $mathbb{F}$ a field of characteristic $p$. We filter the cochain complex of a free $G$-space with coefficients in $mathbb{F}$ by powers of the augmentation ideal of $mathbb{F} G$. We show that the cup product induces a multiplicative structure on the arising spectral sequence and compute the $E_1$-page as a bigraded algebra. As an application, we prove that recent counterexamples of Iyengar and Walker to an algebraic version of Carlssons conjecture can not be realized topologically.
We reformulate the problem of bounding the total rank of the homology of perfect chain complexes over the group ring $mathbb{F}_p[G]$ of an elementary abelian $p$-group $G$ in terms of commutative algebra. This extends results of Carlsson for $p=2$ t
For a connected Noetherian unstable algebra $R$ over the mod $p$ Steenrod algebra, we pro
We consider a Fermat curve $F_n:x^n+y^n+z^n=1$ over an algebraically closed field $k$ of characteristic $pgeq0$ and study the action of the automorphism group $G=left(mathbb{Z}/nmathbb{Z}timesmathbb{Z}/nmathbb{Z}right)rtimes S_3$ on the canonical rin
The circle-equivariant spectrum MString_C is the equivariant analogue of the cobordism spectrum MU<6> of stably almost complex manifolds with c_1=c_2=0. Given a rational elliptic curve C, the second author has defined a ring T-spectrum EC representin
We introduce a notion of freeness for $RO$-graded equivariant generalized homology theories, considering spaces or spectra $E$ such that the $R$-homology of $E$ splits as a wedge of the $R$-homology of induced virtual representation spheres. The full