ﻻ يوجد ملخص باللغة العربية
We propose a novel adaptive and causal random linear network coding (AC-RLNC) algorithm with forward error correction (FEC) for a point-to-point communication channel with delayed feedback. AC-RLNC is adaptive to the channel condition, that the algorithm estimates, and is causal, as coding depends on the particular erasure realizations, as reflected in the feedback acknowledgments. Specifically, the proposed model can learn the erasure pattern of the channel via feedback acknowledgments, and adaptively adjust its retransmission rates using a priori and posteriori algorithms. By those adjustments, AC-RLNC achieves the desired delay and throughput, and enables transmission with zero error probability. We upper bound the throughput and the mean and maximum in order delivery delay of AC-RLNC, and prove that for the point to point communication channel in the non-asymptotic regime the proposed code may achieve more than 90% of the channel capacity. To upper bound the throughput we utilize the minimum Bhattacharyya distance for the AC-RLNC code. We validate those results via simulations. We contrast the performance of AC-RLNC with the one of selective repeat (SR)-ARQ, which is causal but not adaptive, and is a posteriori. Via a study on experimentally obtained commercial traces, we demonstrate that a protocol based on AC-RLNC can, vis-`a-vis SR-ARQ, double the throughput gains, and triple the gain in terms of mean in order delivery delay when the channel is bursty. Furthermore, the difference between the maximum and mean in order delivery delay is much smaller than that of SR-ARQ. Closing the delay gap along with boosting the throughput is very promising for enabling ultra-reliable low-latency communications (URLLC) applications.
Batched network coding (BNC) is a low-complexity solution to network transmission in multi-hop packet networks with packet loss. BNC encodes the source data into batches of packets. As a network coding scheme, the intermediate nodes perform recoding
Multi-hop networks become popular network topologies in various emerging Internet of things applications. Batched network coding (BNC) is a solution to reliable communications in such networks with packet loss. By grouping packets into small batches
Batched network coding is a variation of random linear network coding which has low computational and storage costs. In order to adapt to random fluctuations in the number of erasures in individual batches, it is not optimal to recode and transmit th
We consider communication over a noisy network under randomized linear network coding. Possible error mechanism include node- or link- failures, Byzantine behavior of nodes, or an over-estimate of the network min-cut. Building on the work of Koetter
This paper investigates the information freshness of two-way relay networks (TWRN) operated with physical-layer network coding (PNC). Information freshness is quantified by age of information (AoI), defined as the time elapsed since the generation ti