ﻻ يوجد ملخص باللغة العربية
CeRhIn$_{5}$ is a Kondo-lattice prototype in which a magnetic field B$bf{^{ast}simeq}$ 30 T induces an abrupt Fermi-surface (FS) reconstruction and pronounced in-plane electrical transport anisotropy all within its antiferromagnetic state. Though the antiferromagnetic order at zero field is well-understood, the origin of an emergent state at B$^{ast}$ remains unknown due to challenges inherent to probing states microscopically at high fields. Here, we report low-temperature Nuclear Magnetic Resonance (NMR) measurements revealing a discontinuous decrease in the $^{115}$In formal Knight shift, without changes in crystal or magnetic structures, of CeRhIn$_{5}$ at fields spanning B$^{ast}$. We show that the emergent state above B$^{ast}$ results from a change in Ces 4f orbitals that arises from field-induced evolution of crystal-electric field (CEF) energy levels. This change in orbital character enhances hybridisation between the 4f and the conduction electrons (c.e.) that leads ultimately to an itinerant quantum-critical point at B$bf{_{c0} simeq}$ 50 T.
Synergic effect of electronic correlation and spin-orbit coupling is an emerging topic in topological materials. Central to this rapidly developing area are the prototypes of strongly correlated heavy-fermion systems. Recently, some Ce-based compound
The nature of superconductivity in heavy-fermion materials is a subject under intense debate, and controlling this many-body state is central for its eventual understanding. Here, we examine how proximity effects may change this phenomenon, by invest
We report neutron scattering experiments performed to investigate the dynamic magnetic properties of the Kondo-lattice compound YbNi2B2C. The spectrum of magnetic excitations is found to be broad, extending up to at least 150 meV, and contains inelas
A significant number of Kondo-lattice ferromagnets order perpendicular to the easy magnetization axis dictated by the crystalline electric field. The nature of this phenomenon has attracted considerable attention, but remains poorly understood. In th
Recent experiments have examined the impact of a magnetic field on ferroquadrupolar orders in the intermetallic Kondo material PrTi$_2$Al$_{20}$. Motivated by this, we use extensive Monte Carlo simulations to study a diamond lattice XY model of non-K