The second generation of gravitational-wave detectors are being built and tuned all over the world. The detection of signals from binary black holes is beginning to fulfill the promise of gravitational-wave astronomy. In this work, we examine several possible configurations for third-generation laser interferometers in existing km-scale facilities. We propose a set of astrophysically motivated metrics to evaluate detector performance. We measure the impact of detector design choices against these metrics, providing a quantitative cost-benefit analyses of the resulting scientific payoffs.