ﻻ يوجد ملخص باللغة العربية
In this paper, motivated by a question posed in cite{AH}, we introduce strongly biconvex graphs as a subclass of weakly chordal and bipartite graphs. We give a linear time algorithm to find an induced matching for such graphs and we prove that this algorithm indeed gives a maximum induced matching. Applying this algorithm, we provide a strongly biconvex graph whose (monomial) edge ideal does not admit a unique extremal Betti number. Using this constructed graph, we provide an infinite family of the so-called closed graphs (also known as proper interval graphs) whose binomial edge ideals do not have a unique extremal Betti number. This, in particular, answers the aforementioned question in cite{AH}.
Let $G$ be a finite simple graph on the vertex set $V(G) = {x_1, ldots, x_n}$ and $I(G) subset K[V(G)]$ its edge ideal, where $K[V(G)]$ is the polynomial ring in $x_1, ldots, x_n$ over a field $K$ with each ${rm deg} x_i = 1$ and where $I(G)$ is gene
Squarefree powers of edge ideals are intimately related to matchings of the underlying graph. In this paper we give bounds for the regularity of squarefree powers of edge ideals, and we consider the question of when such powers are linearly related o
A matching $M$ in a graph $G$ is said to be uniquely restricted if there is no other matching in $G$ that matches the same set of vertices as $M$. We describe a polynomial-time algorithm to compute a maximum cardinality uniquely restricted matching i
Given a large graph $H$, does the binomial random graph $G(n,p)$ contain a copy of $H$ as an induced subgraph with high probability? This classical question has been studied extensively for various graphs $H$, going back to the study of the independe
A biconvex polytope is a convex polytope that is also tropically convex. It is well known that every bounded cell of a tropical linear space is a biconvex polytope, but its converse has been a conjecture. We classify biconvex polytopes, and prove the