ﻻ يوجد ملخص باللغة العربية
Incomplete color sampling, noise degradation, and limited resolution are the three key problems that are unavoidable in modern camera systems. Demosaicing (DM), denoising (DN), and super-resolution (SR) are core components in a digital image processing pipeline to overcome the three problems above, respectively. Although each of these problems has been studied actively, the mixture problem of DM, DN, and SR, which is a higher practical value, lacks enough attention. Such a mixture problem is usually solved by a sequential solution (applying each method independently in a fixed order: DM $to$ DN $to$ SR), or is simply tackled by an end-to-end network without enough analysis into interactions among tasks, resulting in an undesired performance drop in the final image quality. In this paper, we rethink the mixture problem from a holistic perspective and propose a new image processing pipeline: DN $to$ SR $to$ DM. Extensive experiments show that simply modifying the usual sequential solution by leveraging our proposed pipeline could enhance the image quality by a large margin. We further adopt the proposed pipeline into an end-to-end network, and present Trinity Enhancement Network (TENet). Quantitative and qualitative experiments demonstrate the superiority of our TENet to the state-of-the-art. Besides, we notice the literature lacks a full color sampled dataset. To this end, we contribute a new high-quality full color sampled real-world dataset, namely PixelShift200. Our experiments show the benefit of the proposed PixelShift200 dataset for raw image processing.
We propose a deep reparametrization of the maximum a posteriori formulation commonly employed in multi-frame image restoration tasks. Our approach is derived by introducing a learned error metric and a latent representation of the target image, which
Neural-networks based image restoration methods tend to use low-resolution image patches for training. Although higher-resolution image patches can provide more global information, state-of-the-art methods cannot utilize them due to their huge GPU me
In fluorescence microscopy live-cell imaging, there is a critical trade-off between the signal-to-noise ratio and spatial resolution on one side, and the integrity of the biological sample on the other side. To obtain clean high-resolution (HR) image
Most recent video super-resolution (SR) methods either adopt an iterative manner to deal with low-resolution (LR) frames from a temporally sliding window, or leverage the previously estimated SR output to help reconstruct the current frame recurrentl
Acquiring High Resolution (HR) Magnetic Resonance (MR) images requires the patient to remain still for long periods of time, which causes patient discomfort and increases the probability of motion induced image artifacts. A possible solution is to ac