ترغب بنشر مسار تعليمي؟ اضغط هنا

On Closed 6-Manifolds Admitting Riemannian Metrics with Positive Sectional Curvature and Non-Abelian Symmetry

62   0   0.0 ( 0 )
 نشر من قبل Yuhang Liu
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Yuhang Liu




اسأل ChatGPT حول البحث

We study the topology of closed, simply-connected, 6-dimensional Riemannian manifolds of positive sectional curvature which admit isometric actions by $SU(2)$ or $SO(3)$. We show that their Euler characteristic agrees with that of the known examples, i.e. $S^6$, $mathbb{CP}^3$, the Wallach space $SU(3)/T^2$ and the biquotient $SU(3)//T^2$. We also classify, up to equivariant diffeomorphism, certain actions without exceptional orbits and show that there are strong restrictions on the exceptional strata.



قيم البحث

اقرأ أيضاً

In this paper, we show that a closed $n$-dimensional generalized ($lambda, n+m)$-Einstein manifold with positive isotropic curvature and constant scalar curvature must be isometric to either a sphere ${Bbb S}^n$, or a product ${Bbb S}^{1} times {Bbb S}^{n-1}$ of a circle with an $(n-1)$-sphere, up to finite cover and rescaling.
165 - Jon Wolfson 2019
Let M be a Riemannian n-manifold with n greater than or equal to 3. For k between 1 and n, we say M has k-positive Ricci curvature if at every point of M the sum of any k eigenvalues of the Ricci curvature is strictly positive. In particular, one pos itive Ricci curvature is equivalent to positive Ricci curvature and n-positive Ricci curvature is equivalent to positive scalar curvature. Let G be the fundamental group of the closed manifold M. We say that G is virtually free if G contains a free subgroup of finite index, or equivalently, if some finite cover of M has a fundamental group that is a free group. In this paper we will prove: Let M be a closed Riemannian n-manifold, with n greater than or equal to 3, such that (n-1)-eigenvalues of the Ricci curvature are strictly positive. Then the fundamental group of M is virtually free. As an immediate consequence we have: Let M be a closed Riemannian n-manifold, with n greater than or equal to 3, with 2-positive Ricci curvature. Then the fundamental group of M is virtually free.
We show that a closed almost Kahler 4-manifold of globally constant holomorphic sectional curvature $kgeq 0$ with respect to the canonical Hermitian connection is automatically Kahler. The same result holds for $k<0$ if we require in addition that th e Ricci curvature is J-invariant. The proofs are based on the observation that such manifolds are self-dual, so that Chern-Weil theory implies useful integral formulas, which are then combined with results from Seiberg--Witten theory.
In this note we prove that a four-dimensional compact oriented half-confor-mally flat Riemannian manifold $M^4$ is topologically $mathbb{S}^{4}$ or $mathbb{C}mathbb{P}^{2},$ provided that the sectional curvatures all lie in the interval $[frac{3sqrt{ 3}-5}{4},,1].$ In addition, we use the notion of biorthogonal (sectional) curvature to obtain a pinching condition which guarantees that a four-dimensional compact manifold is homeomorphic to a connected sum of copies of the complex projective plane or the $4$-sphere.
91 - Lei Ni , Qingsong Wang , 2018
In this paper we study the class of compact Kahler manifolds with positive orthogonal Ricci curvature: $Ric^perp>0$. First we illustrate examples of Kahler manifolds with $Ric^perp>0$ on Kahler C-spaces, and construct ones on certain projectivized ve ctor bundles. These examples show the abundance of Kahler manifolds which admit metrics of $Ric^perp>0$. Secondly we prove some (algebraic) geometric consequences of the condition $Ric^perp>0$ to illustrate that the condition is also quite restrictive. Finally this last point is made evident with a classification result in dimension three and a partial classification in dimension four.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا