ﻻ يوجد ملخص باللغة العربية
We study the topology of closed, simply-connected, 6-dimensional Riemannian manifolds of positive sectional curvature which admit isometric actions by $SU(2)$ or $SO(3)$. We show that their Euler characteristic agrees with that of the known examples, i.e. $S^6$, $mathbb{CP}^3$, the Wallach space $SU(3)/T^2$ and the biquotient $SU(3)//T^2$. We also classify, up to equivariant diffeomorphism, certain actions without exceptional orbits and show that there are strong restrictions on the exceptional strata.
In this paper, we show that a closed $n$-dimensional generalized ($lambda, n+m)$-Einstein manifold with positive isotropic curvature and constant scalar curvature must be isometric to either a sphere ${Bbb S}^n$, or a product ${Bbb S}^{1} times {Bbb
Let M be a Riemannian n-manifold with n greater than or equal to 3. For k between 1 and n, we say M has k-positive Ricci curvature if at every point of M the sum of any k eigenvalues of the Ricci curvature is strictly positive. In particular, one pos
We show that a closed almost Kahler 4-manifold of globally constant holomorphic sectional curvature $kgeq 0$ with respect to the canonical Hermitian connection is automatically Kahler. The same result holds for $k<0$ if we require in addition that th
In this note we prove that a four-dimensional compact oriented half-confor-mally flat Riemannian manifold $M^4$ is topologically $mathbb{S}^{4}$ or $mathbb{C}mathbb{P}^{2},$ provided that the sectional curvatures all lie in the interval $[frac{3sqrt{
In this paper we study the class of compact Kahler manifolds with positive orthogonal Ricci curvature: $Ric^perp>0$. First we illustrate examples of Kahler manifolds with $Ric^perp>0$ on Kahler C-spaces, and construct ones on certain projectivized ve