ﻻ يوجد ملخص باللغة العربية
Enabling computational systems with the ability to localize actions in video-based content has manifold applications. Traditionally, such a problem is approached in a fully-supervised setting where video-clips with complete frame-by-frame annotations around the actions of interest are provided for training. However, the data requirements needed to achieve adequate generalization in this setting is prohibitive. In this work, we circumvent this issue by casting the problem in a weakly supervised setting, i.e., by considering videos as labelled `sets of unlabelled video segments. Firstly, we apply unsupervised segmentation to take advantage of the elementary structure of each video. Subsequently, a convolutional neural network is used to extract RGB features from the resulting video segments. Finally, Multiple Instance Learning (MIL) is employed to predict labels at the video segment level, thus inherently performing spatio-temporal action detection. In contrast to previous work, we make use of a different MIL formulation in which the label of each video segment is continuous rather then discrete, making the resulting optimization function tractable. Additionally, we utilize a set splitting technique for regularization. Experimental results considering multiple performance indicators on the UCF-Sports data-set support the effectiveness of our approach.
Temporal Action Localization (TAL) in untrimmed video is important for many applications. But it is very expensive to annotate the segment-level ground truth (action class and temporal boundary). This raises the interest of addressing TAL with weak s
Weakly supervised action localization is a challenging task with extensive applications, which aims to identify actions and the corresponding temporal intervals with only video-level annotations available. This paper analyzes the order-sensitive and
Weakly-supervised temporal action localization aims to learn detecting temporal intervals of action classes with only video-level labels. To this end, it is crucial to separate frames of action classes from the background frames (i.e., frames not bel
Weakly supervised temporal action localization aims to detect and localize actions in untrimmed videos with only video-level labels during training. However, without frame-level annotations, it is challenging to achieve localization completeness and
As a challenging task of high-level video understanding, weakly supervised temporal action localization has been attracting increasing attention. With only video annotations, most existing methods seek to handle this task with a localization-by-class