Direct Visualization of Spatial inhomogeneity of Spin Stripes Order in La1.72Sr0.28NiO4


الملخص بالإنكليزية

In several strongly correlated electron systems, defects, charge and local lattice distortions are found to show complex inhomogeneous spatial distributions. There is growing evidence that such inhomogeneity plays a fundamental role in unique functionality of quantum complex materials. La1.72Sr0.28NiO4 is a prototypical strongly correlated material showing spin striped order associated with lattice and charge modulations. In this work we present the spatial distribution of the spin organization by applying micro X-ray diffraction to La1.72Sr0.28NiO4, mapping the spin-density-wave order below the 120K onset temperature. We find that the spin-density-wave order shows the formation of nanoscale puddles with large spatial fluctuations. The nano-puddle density changes on the microscopic scale forming a multiscale phase separation extending from nanoscale to micron scale with scale-free distribution. Indeed spin-density-wave striped puddles are disconnected by spatial regions with different stripe orientation or negligible spin-density-wave order. The present work highlights the complex nanoscale phase separation of spin stripes in nickelate perovskites and opens the question of the energetics at domain interfaces

تحميل البحث