ﻻ يوجد ملخص باللغة العربية
We present multi-frequency scatter broadening evolution of 29 pulsars observed with the LOw Frequency ARray (LOFAR) and Long Wavelength Array (LWA). We conducted new observations using LOFAR Low Band Antennae (LBA) as well as utilized the archival data from LOFAR and LWA. This study has increased the total of all multi-frequency or wide-band scattering measurements up to a dispersion measure (DM) of 150~pc,cm$^{-3}$ by 60%. The scatter broadening timescale ($tau_{sc}$) measurements at different frequencies are often combined by scaling them to a common reference frequency of 1,GHz. Using our data, we show that the $tau_{sc}$--DM variations are best fitted for reference frequencies close to 200--300,MHz, and scaling to higher or lower frequencies results in significantly more scatter in data. We suggest that this effect might indicate a frequency dependence of the scatter broadening scaling index ($alpha$). However, a selection bias due to our chosen observing frequencies can not be ruled out with the current data set. Our data did not favour any particular model of the DM -- $tau_{sc}$ relations, and we do not see a statistically significant break at the low DM range in this relation. The turbulence spectral index ($beta$) is found to be steeper than that is expected from a Kolmogorov spectrum. This indicates that the local ISM turbulence may have a low wave-number cutoff or presence of large scale inhomogeneities in the line of sight to some of the reported pulsars.
We show the results of our analysis of the pulse broadening phenomenon in 25 pulsars at several frequencies using the data gathered with GMRT and Effelsberg radiotelescopes. Twenty two of these pulsars were not studied in that regard before and our w
We present the results of the multi-frequency scatter time measurements for ten radio pulsars that were relatively less studied in this regard. The observations were performed using the Giant Meterwave Radio Telescope at the observing frequencies of
The current understanding of the spin evolution of young pulsars is reviewed through a compilation of braking index measurements. An immediate conclusion is that the spin evolution of all pulsars with a measured braking index is not purely caused by
Rotation-powered millisecond radio pulsars have been spun up to their present spin period by a $10^8$ - $10^9$ yr long X-ray-bright phase of accretion of matter and angular momentum in a low-to-intermediate mass binary system. Recently, the discovery
We present our results of pulse broadening time estimates and the study of the frequency scaling of this quantity for 60 pulsars based on actual multi-frequency scattering estimates. This research was based on our own measurements, performed on the o