ﻻ يوجد ملخص باللغة العربية
Chaperone-assisted translocation through a nanopore embedded in membrane holds a prominent role in the transport of biopolymers. Inspired by classical Brownian ratchet, we develop a theoretical framework characterizing such translocation process through a master equation approach. In this framework, the polymer chain, provided with reversible binding of chaperones, undergoes forward/backward diffusion, which is rectified by chaperones. We drop the assumption of timescale separation and keep the length of a polymer chain finite, both of which happen to be the key points in most of the previous studies. Our framework makes it accessible to derive analytical expressions for mean translocation velocity and effective diffusion constant in stationary state, which is the basis of a comprehensive understanding towards the dynamics of such process. Generally, the translocation of polymer chain across membrane consists of three subprocesses: initiation, termination, and translocation of the main body part of a polymer chain, where the translocation of the main body part depends on the binding/unbinding kinetics of chaperones. That is the main concern of this study. Our results show that the increase of forward/backward diffusion rate of a polymer chain and the binding/unbinding ratio of chaperones both raise the mean translocation velocity of a polymer chain, and roughly speaking, the dependence of effective diffusion constant on these two factors achieves similar behavior.
Lipid phase heterogeneity in the plasma membrane is thought to be crucial for many aspects of cell signaling, but the physical basis of participating membrane domains such as lipid rafts remains controversial. Here we consider a lattice model yieldin
The infection pathway of virus in cytoplasm of a living cell is studied from the viewpoint of diffusion theory. The cytoplasm plays a role of a medium for stochastic motion of the virus contained in the endosome as well as the free virus. It is exper
Positioning of nucleosomes along eukaryotic genomes plays an important role in their organization and regulation. There are many different factors affecting the location of nucleosomes. Some can be viewed as preferential binding of a single nucleosom
Mapping of the forces on biomolecules in cell membranes has spurred the development of effective labels, e.g. organic fluorophores and nanoparticles, to track trajectories of single biomolecules. Standard methods use particular statistics, namely the
In this paper we argue that, in addition to electrical and chemical signals propagating in the neurons of the brain, signal propagation takes place in the form of biophoton production. This statement is supported by recent experimental confirmation o