ترغب بنشر مسار تعليمي؟ اضغط هنا

The Non-Ideal Organic Electrochemical Transistors Impedance

93   0   0.0 ( 0 )
 نشر من قبل Dominique Vuillaume
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Organic electrochemical transistors offer powerful functionalities for biosensors and neuroinspired electronics, with still much to understand on the time dependent behavior of this electrochemical device. Here, we report on distributed element modeling of the impedance of such microfabricated device, systematically performed under a large concentration variation for KCl(aq) and CaCl2(aq). We propose a new model which takes into account three main deviations to ideality, that were systematically observed, caused by both the materials and the device complexity, over large frequency range (1 Hz to 1 MHz). More than introducing more freedom degree, the introduction of these non redundant parameters and the study of their behaviors as function of the electrolyte concentration and applied voltage give a more detailed picture of the OECT working principles. This optimized model can be further useful for improving OECT performances in many applications (e.g. biosensors, neuroinspired devices) and circuit simulations.



قيم البحث

اقرأ أيضاً

We report the development of nanowire field-effect transistors featuring an ultra-thin parylene film as a polymer gate insulator. The room temperature, gas-phase deposition of parylene is an attractive alternative to oxide insulators prepared at high temperatures using atomic layer deposition. We discuss our custom-built parylene deposition system, which is designed for reliable and controlled deposition of <100 nm thick parylene films on III-V nanowires standing vertically on a growth substrate or horizontally on a device substrate. The former case gives conformally-coated nanowires, which we used to produce functional $Omega$-gate and gate-all-around structures. These give sub-threshold swings as low as 140 mV/dec and on/off ratios exceeding $10^3$ at room temperature. For the gate-all-around structure, we developed a novel fabrication strategy that overcomes some of the limitations with previous lateral wrap-gate nanowire transistors. Finally, we show that parylene can be deposited over chemically-treated nanowire surfaces; a feature generally not possible with oxides produced by atomic layer deposition due to the surface `self-cleaning effect. Our results highlight the potential for parylene as an alternative ultra-thin insulator in nanoscale electronic devices more broadly, with potential applications extending into nanobioelectronics due to parylenes well-established biocompatible properties.
Non-volatile memory devices have been limited to flash architectures that are complex devices. Here, we present a unique photomemory effect in MoS$_2$ transistors. The photomemory is based on a photodoping effect - a controlled way of manipulating th e density of free charges in monolayer MoS$_2$ using a combination of laser exposure and gate voltage application. The photodoping promotes changes on the conductance of MoS$_2$ leading to photomemory states with high memory on/off ratio. Such memory states are non-volatile with an expectation of retaining up to 50 % of the information for tens of years. Furthermore, we show that the photodoping is gate-tunable, enabling control of the recorded memory states. Finally, we propose a model to explain the photodoping, and we provide experimental evidence supporting such a phenomenon. In summary, our work includes the MoS$_2$ phototransistors in the non-volatile memory devices and expands the possibilities of memory application beyond conventional memory architectures.
The ability to actively regulate heat flow at the nanoscale could be a game changer for applications in thermal management and energy harvesting. Such a breakthrough could also enable the control of heat flow using thermal circuits, in a manner analo gous to electronic circuits. Here we demonstrate switchable thermal transistors with an order of magnitude thermal on/off ratio, based on reversible electrochemical lithium intercalation in MoS2 thin films. We use spatially-resolved time-domain thermoreflectance to map the lithium ion distribution during device operation, and atomic force microscopy to show that the lithiated state correlates with increased thickness and surface roughness. First principles calculations reveal that the thermal conductance modulation is due to phonon scattering by lithium rattler modes, c-axis strain, and stacking disorder. This study lays the foundation for electrochemically-driven nanoscale thermal regulators, and establishes thermal metrology as a useful probe of spatio-temporal intercalant dynamics in nanomaterials.
In this work we test graphene electrodes in nano-metric channel n-type Organic Field EffectTransistors (OFETs) based on thermally evaporated thin films of perylene-3,4,9,10-tetracarboxylic acid diimide derivative (PDIF-CN2). By a thorough comparison with short channel transistors made with reference gold electrodes, we found that the output characteristics of the graphene-based devices respond linearly to the applied biases, in contrast with the supra-linear trend of gold-based transistors. Moreover, short channel effects are considerably suppressed in graphene electrodes devices. More specifically, current on/off ratios independent of the channel length (L) and enhanced response for high longitudinal biases are demonstrated for L down to ~140 nm. These results are rationalized taking into account the morphological and electronic characteristics of graphene, showing that the use of graphene electrodes may help to overcome the problem of Space Charge Limited Current (SCLC) in short channel OFETs.
Organic printed electronics has proven its potential as an essential enabler for applications related to healthcare, entertainment, energy and distributed intelligent objects. The possibility of exploiting solution-based and direct-writing production schemes further boosts the benefits offered by such technology, facilitating the implementation of cheap, conformable, bio-compatible electronic applications. The result shown in this work challenges the widespread assumption that such class of electronic devices is relegated to low-frequency operation, owing to the limited charge mobility of the materials and to the low spatial resolution achievable with conventional printing techniques. Here, it is shown that solution-processed and direct-written organic field-effect transistors can be carefully designed and fabricated so to achieve a maximum transition frequency of 160 MHz, unlocking an operational range that was not available before for organics. Such range was believed to be only accessible with more performing classes of semiconductor materials and/or more expensive fabrication schemes. The present achievement opens a route for cost- and energy-efficient manufacturability of flexible and conformable electronics with wireless-communication capabilities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا