ﻻ يوجد ملخص باللغة العربية
Martin Weitzmans Pandoras problem furnishes the mathematical basis for optimal search theory in economics. Nearly 40 years later, Laura Doval introduced a version of the problem in which the searcher is not obligated to pay the cost of inspecting an alternatives value before selecting it. Unlike the original Pandoras problem, the version with nonobligatory inspection cannot be solved optimally by any simple ranking-based policy, and it is unknown whether there exists any polynomial-time algorithm to compute the optimal policy. This motivates the study of approximately optimal policies that are simple and computationally efficient. In this work we provide the first non-trivial approximation guarantees for this problem. We introduce a family of committing policies such that it is computationally easy to find and implement the optimal committing policy. We prove that the optimal committing policy is guaranteed to approximate the fully optimal policy within a $1-frac1e = 0.63ldots$ factor, and for the special case of two boxes we improve this factor to 4/5 and show that this approximation is tight for the class of committing policies.
The Pandoras Box Problem, originally formalized by Weitzman in 1979, models selection from set of random, alternative options, when evaluation is costly. This includes, for example, the problem of hiring a skilled worker, where only one hire can be m
In the secretary problem we are faced with an online sequence of elements with values. Upon seeing an element we have to make an irrevocable take-it-or-leave-it decision. The goal is to maximize the probability of picking the element of maximum value
We propose a truthful-in-expectation, $(1-1/e)$-approximation mechanism for a strategic variant of the generalized assignment problem (GAP). In GAP, a set of items has to be optimally assigned to a set of bins without exceeding the capacity of any si
In many settings, people exhibit behavior that is inconsistent across time --- we allocate a block of time to get work done and then procrastinate, or put effort into a project and then later fail to complete it. An active line of research in behavio
The prophet and secretary problems demonstrate online scenarios involving the optimal stopping theory. In a typical prophet or secretary problem, selection decisions are assumed to be immediate and irrevocable. However, many online settings accommoda