ﻻ يوجد ملخص باللغة العربية
The interstellar medium (ISM) is a complex non-linear system governed by gravity and magneto-hydrodynamics, as well as radiative, thermodynamical, and chemical processes. Our understanding of it mostly progresses through observations and numerical simulations, and a quantitative comparison between these two approaches requires a generic and comprehensive statistical description. The goal of this paper is to build such a description, with the purpose to permit an efficient comparison independent of any specific prior or model. We start from the Wavelet Scattering Transform (WST), a low-variance statistical description of non-Gaussian processes, developed in data science, that encodes long-range interactions through a hierarchical multiscale approach based on the Wavelet transform. We perform a reduction of the WST through a fit of its angular dependencies, allowing to gather most of the information it contains into a few components whose physical meanings are identified, and that describe, e.g., isotropic and anisotropic behaviours. The result of this paper is the Reduced Wavelet Scattering Transform (RWST), a statistical description with a small number of coefficients that characterizes complex structures arising from non-linear phenomena, free from any specific prior. The RWST coefficients encode moments of order up to four, have reduced variances, and quantify the couplings between scales. To show the efficiency and generality of this description, we apply it successfully to three kinds of processes: fractional Brownian motions, MHD simulations, and Herschel observations in a molecular cloud. With fewer than 100 coefficients when probing 6 scales and 8 angles on 256*256 maps, we were able with the RWST to perform quantitative comparisons, to infer relevant physical properties, and to produce realistic synthetic fields.
The statistical characterization of the diffuse magnetized ISM and Galactic foregrounds to the CMB poses a major challenge. To account for their non-Gaussian statistics, we need a data analysis approach capable of efficiently quantifying statistical
We present a revised version of our automated technique using Gaussian processes (GPs) to detect Damped Lyman-$alpha$ absorbers (DLAs) along quasar (QSO) sightlines. The main improvement is to allow our Gaussian process pipeline to detect multiple DL
We present the characteristics of the Damped Lyman-$alpha$ (DLA) systems found in the data release DR16 of the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey (SDSS). DLAs were identified using the convolution
We use a semi-analytical model for the substructure of dark matter haloes to assess the too-big-to-fail (TBTF) problem. The model accurately reproduces the average subhalo mass and velocity functions, as well as their halo-to-halo variance, in N-body
We study structure formation in a set of cosmological simulations to uncover the scales in the initial density field that gave rise to the formation of present-day structures. Our simulations share a common primordial power spectrum (here Lambda-CDM)