ﻻ يوجد ملخص باللغة العربية
Proton number fluctuation is sensitive observable to search for the QCD critical point in heavy-ion collisions. In this paper, we studied rapidity acceptance dependence of the proton cumulants and correlation functions in most central Au+Au collisions at $sqrt{s_mathrm{NN}} = 5$ GeV from a microscopic hadronic transport model (JAM). At mid-rapidity, we found the effects of resonance weak decays and hadronic re-scattering on the proton cumulants and correlation functions are small, but those effects get larger when further increasing the rapidity acceptance. On the other hand, we found the baryon number conservation is a dominant background effect on the rapidity acceptance dependence of proton number fluctuations. It leads to a strong suppression of cumulants and cumulant ratios, as well as the negative proton correlation functions. We also studied those two effects on the energy dependence of cumulant ratios of net-proton distributions in most central Au+Au collisions at $sqrt{s_mathrm{NN}} = 5-200$ GeV from JAM model. This work can serve as a non-critical baseline for future QCD critical point search in heavy-ion collisions at high baryon density region.
We studied the effects of centrality fluctuation and deuteron formation on the cumulants ($C_n$) and correlation functions ($kappa_n$) of protons up to sixth order in most central ($b<3$ fm) Au+Au collisions at $sqrt{s_mathrm{NN}}$ = 3 GeV from a mic
We present an analysis of proton number fluctuations in $sqrt{s_{NN}}$ = 2.4 GeV Au+Au collisions measured with the High-Acceptance DiElectron Spectrometer (HADES) at GSI. With the help of extensive detector simulations done with IQMD transport model
Light nuclei production is sensitive to the baryon density fluctuations and can be used to probe the QCD phase transition in relativistic heavy-ion collisions. In this work, we studied the production of proton, deuteron, triton in central Au+Au colli
Global hyperon polarization, $overline{P}_mathrm{H}$, in Au+Au collisions over a large range of collision energy, $sqrt{s_mathrm{NN}}$, has recently been measured and successfully reproduced by hydrodynamic and transport models with intense fluid vor
Measurements of three-dimensional correlation functions of like-sign low transverse momentum kaon pairs from Au+Au collisions at top RHIC energy $sqrt s_{NN}$=200 GeV are presented. The extracted kaon source function is narrower than the pion one and