Fractional Topological Superconductivity and Parafermion Corner States


الملخص بالإنكليزية

We consider a system of weakly coupled Rashba nanowires in the strong spin-orbit interaction (SOI) regime. The nanowires are arranged into two tunnel-coupled layers proximitized by a top and bottom superconductor such that the superconducting phase difference between them is $pi$. We show that in such a system strong electron-electron interactions can stabilize a helical topological superconducting phase hosting Kramers partners of $mathbb{Z}_{2m}$ parafermion edge modes, where $m$ is an odd integer determined by the position of the chemical potential. Furthermore, upon turning on a weak in-plane magnetic field, the system is driven into a second-order topological superconducting phase hosting zero-energy $mathbb{Z}_{2m}$ parafermion bound states localized at two opposite corners of a rectangular sample. As a special case, zero-energy Majorana corner states emerge in the non-interacting limit $m=1$, where the chemical potential is tuned to the SOI energy of the single nanowires.

تحميل البحث