ﻻ يوجد ملخص باللغة العربية
Extensions of the Standard Model are often highly constrained by cosmology. The presence of new states can dramatically alter observed properties of the universe by the presence of additional matter or entropy. In particular, attempts too solve the hierarchy problem through naturalness invariably predict new particles near the weak scale which come into thermal equilibrium. Without a means to deposit this energy into the SM, these models are often excluded. Scenarios of neutral naturalness especially, such as the Twin Higgs frequently suffer from this. However, the Portalino, a singlet fermion that marries gauge neutral fermion operators, can naturally help provide a portal for entropy to return to the SM and to lift fermionic degrees of freedom in the Twin Sector. Together with spontaneous breaking of the $Z_2$ ${rm SM leftrightarrow {rm Twin}}$ symmetry, there are new opportunities to confront the cosmological challenges of these models. Here, we attempt to develop such ideas. We shall show how one can lift many of the light fields by breaking $ztwo$ with a $U(1)_Y$ scalar and its Twin partner. The introduction of Portalinos can lift the remaining degrees of freedom. We shall find that such models are highly constrained by precision SM measurements, motivating moderate extensions beyond this. We will discuss two, one with additional weak matter and another with additional colored matter. The weak model will involve simple two Higgs doublet models on top of $ztwo$ breaking. The strong model will involve the presence of new leptoquarks and diquarks. We will discuss the implications for neutrino masses from radiative corrections and possible colored signals even within these models of neutral naturalness, some of which might appear at the LHC or future colliders.
Portal models that connect the Standard Model to a Dark Sector allow for a wide variety of scenarios beyond the simplest WIMP models. Kinetic mixing of gauge fields in particular has allowed a broad range of new ideas. However, the models that evade
The mirror twin Higgs framework allows for a natural Higgs mass while being consistent with collider bounds on colored symmetry partners to standard model quarks. This mechanism relies crucially on a discrete symmetry which relates each standard mode
In a model independent framework, the effects of new physics at the electroweak scale can be parametrized in terms of an effective Lagrangian expansion. Assuming the $SU(2)_L x U(1)_Y$ gauge symmetry is linearly realized, the expansion at the lowest
An effective $SU(3)times SU(3)$ chiral lagrangian, which includes scalar resonances, is used to describe the process $D^+ rar K^- p^+ p^+$ at low-energies. Our main result is a set of five $S$-wave amplitudes, suited to be used in analyses of production data.
Recently, we have found an exact solution to the full set of Dyson-Schwinger equations of the non-interacting part of the Higgs sector of the Standard Model obtained by solving the 1-point correlation function equation. In this work we extend this an