ترغب بنشر مسار تعليمي؟ اضغط هنا

Lifelong Sequential Modeling with Personalized Memorization for User Response Prediction

163   0   0.0 ( 0 )
 نشر من قبل Kan Ren
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

User response prediction, which models the user preference w.r.t. the presented items, plays a key role in online services. With two-decade rapid development, nowadays the cumulated user behavior sequences on mature Internet service platforms have become extremely long since the users first registration. Each user not only has intrinsic tastes, but also keeps changing her personal interests during lifetime. Hence, it is challenging to handle such lifelong sequential modeling for each individual user. Existing methodologies for sequential modeling are only capable of dealing with relatively recent user behaviors, which leaves huge space for modeling long-term especially lifelong sequential patterns to facilitate user modeling. Moreover, one users behavior may be accounted for various previous behaviors within her whole online activity history, i.e., long-term dependency with multi-scale sequential patterns. In order to tackle these challenges, in this paper, we propose a Hierarchical Periodic Memory Network for lifelong sequential modeling with personalized memorization of sequential patterns for each user. The model also adopts a hierarchical and periodical updating mechanism to capture multi-scale sequential patterns of user interests while supporting the evolving user behavior logs. The experimental results over three large-scale real-world datasets have demonstrated the advantages of our proposed model with significant improvement in user response prediction performance against the state-of-the-arts.



قيم البحث

اقرأ أيضاً

News recommendation is critical for personalized news access. Existing news recommendation methods usually infer users personal interest based on their historical clicked news, and train the news recommendation models by predicting future news clicks . A core assumption behind these methods is that news click behaviors can indicate user interest. However, in practical scenarios, beyond the relevance between user interest and news content, the news click behaviors may also be affected by other factors, such as the bias of news presentation in the online platform. For example, news with higher positions and larger sizes are usually more likely to be clicked. The bias of clicked news may bring noises to user interest modeling and model training, which may hurt the performance of the news recommendation model. In this paper, we propose a bias-aware personalized news recommendation method named DebiasRec, which can handle the bias information for more accurate user interest inference and model training. The core of our method includes a bias representation module, a bias-aware user modeling module, and a bias-aware click prediction module. The bias representation module is used to model different kinds of news bias and their interactions to capture their joint effect on click behaviors. The bias-aware user modeling module aims to infer users debiased interest from the clicked news articles by using their bias information to calibrate the interest model. The bias-aware click prediction module is used to train a debiased news recommendation model from the biased click behaviors, where the click score is decomposed into a preference score indicating users interest in the news content and a news bias score inferred from its different bias features. Experiments on two real-world datasets show that our method can effectively improve the performance of news recommendation.
101 - Tao Qi , Fangzhao Wu , Chuhan Wu 2021
User interest modeling is critical for personalized news recommendation. Existing news recommendation methods usually learn a single user embedding for each user from their previous behaviors to represent their overall interest. However, user interes t is usually diverse and multi-grained, which is difficult to be accurately modeled by a single user embedding. In this paper, we propose a news recommendation method with hierarchical user interest modeling, named HieRec. Instead of a single user embedding, in our method each user is represented in a hierarchical interest tree to better capture their diverse and multi-grained interest in news. We use a three-level hierarchy to represent 1) overall user interest; 2) user interest in coarse-grained topics like sports; and 3) user interest in fine-grained topics like football. Moreover, we propose a hierarchical user interest matching framework to match candidate news with different levels of user interest for more accurate user interest targeting. Extensive experiments on two real-world datasets validate our method can effectively improve the performance of user modeling for personalized news recommendation.
Community based question answering services have arisen as a popular knowledge sharing pattern for netizens. With abundant interactions among users, individuals are capable of obtaining satisfactory information. However, it is not effective for users to attain answers within minutes. Users have to check the progress over time until the satisfying answers submitted. We address this problem as a user personalized satisfaction prediction task. Existing methods usually exploit manual feature selection. It is not desirable as it requires careful design and is labor intensive. In this paper, we settle this issue by developing a new multiple instance deep learning framework. Specifically, in our settings, each question follows a weakly supervised learning multiple instance learning assumption, where its obtained answers can be regarded as instance sets and we define the question resolved with at least one satisfactory answer. We thus design an efficient framework exploiting multiple instance learning property with deep learning to model the question answer pairs. Extensive experiments on large scale datasets from Stack Exchange demonstrate the feasibility of our proposed framework in predicting askers personalized satisfaction. Our framework can be extended to numerous applications such as UI satisfaction Prediction, multi armed bandit problem, expert finding and so on.
Precise user modeling is critical for online personalized recommendation services. Generally, users interests are diverse and are not limited to a single aspect, which is particularly evident when their behaviors are observed for a longer time. For e xample, a user may demonstrate interests in cats/dogs, dancing and food & delights when browsing short videos on Tik Tok; the same user may show interests in real estate and womens wear in her web browsing behaviors. Traditional models tend to encode a users behaviors into a single embedding vector, which do not have enough capacity to effectively capture her diverse interests. This paper proposes a Sequential User Matrix (SUM) to accurately and efficiently capture users diverse interests. SUM models user behavior with a multi-channel network, with each channel representing a different aspect of the users interests. User states in different channels are updated by an emph{erase-and-add} paradigm with interest- and instance-level attention. We further propose a local proximity debuff component and a highway connection component to make the model more robust and accurate. SUM can be maintained and updated incrementally, making it feasible to be deployed for large-scale online serving. We conduct extensive experiments on two datasets. Results demonstrate that SUM consistently outperforms state-of-the-art baselines.
269 - Iyad Batal , Akshay Soni 2020
Multiple content providers rely on native advertisement for revenue by placing ads within the organic content of their pages. We refer to this setting as ``queryless to differentiate from search advertisement where a user submits a search query and g ets back related ads. Understanding user intent is critical because relevant ads improve user experience and increase the likelihood of delivering clicks that have value to our advertisers. This paper presents Multi-Channel Sequential Behavior Network (MC-SBN), a deep learning approach for embedding users and ads in a semantic space in which relevance can be evaluated. Our proposed user encoder architecture summarizes user activities from multiple input channels--such as previous search queries, visited pages, or clicked ads--into a user vector. It uses multiple RNNs to encode sequences of event sessions from the different channels and then applies an attention mechanism to create the user representation. A key property of our approach is that user vectors can be maintained and updated incrementally, which makes it feasible to be deployed for large-scale serving. We conduct extensive experiments on real-world datasets. The results demonstrate that MC-SBN can improve the ranking of relevant ads and boost the performance of both click prediction and conversion prediction in the queryless native advertising setting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا