ﻻ يوجد ملخص باللغة العربية
MPC (Magneto-Photonic Crystal) Optimisation is a feature-rich Windows software application designed to enable researchers to analyze the optical and magneto-optical spectral properties of multilayers containing gyrotropic constituents. A set of computational algorithms aimed at enabling the design optimization and optical or magneto-optical (MO) spectral analysis of 1D magnetic photonic crystals (MPC) is reported, together with its Windows software implementation. Relevant material property datasets (e.g., the optical spectra of refractive index, absorption, and gyration) of several important optical and MO materials are included, enabling easy reproduction of the previously published results from the field of MPC-based Faraday rotator development, and an effective demonstration-quality introduction of future users to the multiple features of this package. We also report on the methods and algorithms used to obtain the absorption coefficient spectral dispersion datasets for new materials, for which the film thickness, transmission spectrum, and refractive index dispersion function are known.
High throughput experimental methods are known to accelerate the rate of research, development, and deployment of electronic materials. For example, thin films with lateral gradients in composition, thickness, or other parameters have been used along
Fabricating high-performance and/or high-density flexible electronics on plastic substrates is often limited by the poor dimensional stability of polymer substrates. This can be mitigated by using glass carriers during fabrication, but removing the p
$beta$-Ga$_2$O$_3$ is a next-generation ultra wide bandgap semiconductor (E$_g$ = 4.8 eV to 4.9 eV) that can be homoepitaxially grown on commercial substrates, enabling next-generation power electronic devices among other important applications. Anal
We demonstrate how the configuration and magnitude of a magnetic field, applied during magnetron sputtering of a NiFe/IrMn bilayer, influence the magnetic properties of the structure, such as hysteresis loop shape, coercivity, and exchange bias. Furt
We demonstrate that the confocal laser scanning microscopy (CLSM) provides a non-destructive, highly-efficient characterization method for large-area epitaxial graphene and graphene nanostructures on SiC substrates, which can be applied in ambient ai