ﻻ يوجد ملخص باللغة العربية
We consider a general class of mean field control problems described by stochastic delayed differential equations of McKean-Vlasov type. Two numerical algorithms are provided based on deep learning techniques, one is to directly parameterize the optimal control using neural networks, the other is based on numerically solving the McKean-Vlasov forward anticipated backward stochastic differential equation (MV-FABSDE) system. In addition, we establish a necessary and sufficient stochastic maximum principle for this class of mean field control problems with delay based on the differential calculus on function of measures, as well as existence and uniqueness results for the associated MV-FABSDE system.
We present a Reinforcement Learning (RL) algorithm to solve infinite horizon asymptotic Mean Field Game (MFG) and Mean Field Control (MFC) problems. Our approach can be described as a unified two-timescale Mean Field Q-learning: The emph{same} algori
We address the numerical approximation of Mean Field Games with local couplings. For power-like Hamiltonians, we consider both unconstrained and constrained stationary systems with density constraints in order to model hard congestion effects. For fi
The goal of this paper is to study the long time behavior of solutions of the first-order mean field game (MFG) systems with a control on the acceleration. The main issue for this is the lack of small time controllability of the problem, which preven
In this paper we model the role of a government of a large population as a mean field optimal control problem. Such control problems are constrainted by a PDE of continuity-type, governing the dynamics of the probability distribution of the agent pop
Entropy regularization has been extensively adopted to improve the efficiency, the stability, and the convergence of algorithms in reinforcement learning. This paper analyzes both quantitatively and qualitatively the impact of entropy regularization