ترغب بنشر مسار تعليمي؟ اضغط هنا

Lyapunov Analysis of Chimera States in Globally Coupled Stuart-Landau oscillators

168   0   0.0 ( 0 )
 نشر من قبل Felix P. Kemeth
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Oscillatory systems with long-range or global coupling offer promising insight into the interplay between high-dimensional (or microscopic) chaotic motion and collective interaction patterns. Within this paper, we use Lyapunov analysis to investigate whether chimera states in globally coupled Stuart-Landau (SL) oscillators exhibit collective degrees of freedom. We compare two types of chimera states, which emerge in SL ensembles with linear and nonlinear global coupling, respectively, the latter introducing a constraint that conserves the oscillation of the mean. Lyapunov spectra reveal that for both chimera states the Lyapunov exponents split into different groups with different convergence properties in the limit of large system size. Furthermore, in both cases the Lyapunov dimension is found to scale extensively and the localization properties of covariant Lypunov vectors manifest the presence of collective Lyapunov modes. Here, however, we find qualitative differences between the two types of chimera states: Whereas the ones in the system under nonlinear global coupling exhibit only slow collective modes corresponding to Lyapunov exponents equal or close to zero, those which experience the linear mean-field coupling exhibit also faster collective modes associated with Lyapunov exponents with large positive or negative values.



قيم البحث

اقرأ أيضاً

We reduce the dynamics of an ensemble of mean-coupled Stuart-Landau oscillators close to the synchronized solution. In particular, we map the system onto the center manifold of the Benjamin-Feir instability, the bifurcation destabilizing the synchron ized oscillation. Using symmetry arguments, we describe the structure of the dynamics on this center manifold up to cubic order, and derive expressions for its parameters. This allows us to investigate phenomena described by the Stuart-Landau ensemble, such as clustering and cluster singularities, in the lower-dimensional center manifold, providing further insights into the symmetry-broken dynamics of coupled oscillators. We show that cluster singularities in the Stuart-Landau ensemble correspond to vanishing quadratic terms in the center manifold dynamics. In addition, they act as organizing centers for the saddle-node bifurcations creating unbalanced cluster states as well for the transverse bifurcations altering the cluster stability. Furthermore, we show that bistability of different solutions with the same cluster-size distribution can only occur when either cluster contains at least $1/3$ of the oscillators, independent of the system parameters.
The ubiquitous occurrence of cluster patterns in nature still lacks a comprehensive understanding. It is known that the dynamics of many such natural systems is captured by ensembles of Stuart-Landau oscillators. Here, we investigate clustering dynam ics in a mean-coupled ensemble of such limit-cycle oscillators. In particular we show how clustering occurs in minimal networks, and elaborate how the observed 2-cluster states crowd when increasing the number of oscillators. Using persistence, we discuss how this crowding leads to a continuous transition from balanced cluster states to synchronized solutions via the intermediate unbalanced 2-cluster states. These cascade-like transitions emerge from what we call a cluster singularity. At this codimension-2 point, the bifurcations of all 2-cluster states collapse and the stable balanced cluster state bifurcates into the synchronized solution supercritically. We confirm our results using numerical simulations, and discuss how our conclusions apply to spatially extended systems.
253 - Hongjie Bi , Xin Hu , Xiyun Zhang 2017
Recently, the explosive phase transitions, such as explosive percolation and explosive synchronization, have attracted extensive research interest. So far, most existing works investigate Kuramoto-type models, where only phase variables are involved. Here, we report the occurrence of explosive oscillation quenching in a system of coupled Stuart-Landau oscillators that incorporates both phase and amplitude dynamics. We observe three typical scenarios with distinct microscopic mechanism of occurrence, i.e., ordinary, hierarchical, and cluster explosive oscillation death, corresponding to different frequency distributions of oscillators, respectively. We carry out theoretical analyses and obtain the backward transition point, which is shown to be independent of the specific frequency distributions. Numerical results are consistent with the theoretical prediction.
244 - Carlo R. Laing 2019
We consider networks formed from two populations of identical oscillators, with uniform strength all-to-all coupling within populations, and also between populations, with a different strength. Such systems are known to support chimera states in whic h oscillators within one population are perfectly synchronised while in the other the oscillators are incoherent, and have a different mean frequency from those in the synchronous population. Assuming that the oscillators in the incoherent population always lie on a closed smooth curve $mathcal{C}$, we derive and analyse the dynamics of the shape of $mathcal{C}$ and the probability density on $mathcal{C}$, for four different types of oscillators. We put some previously derived results on a rigorous footing, and analyse two new systems.
We consider networks of delay-coupled Stuart-Landau oscillators. In these systems, the coupling phase has been found to be a crucial control parameter. By proper choice of this parameter one can switch between different synchronous oscillatory states of the network. Applying the speed-gradient method, we derive an adaptive algorithm for an automatic adjustment of the coupling phase such that a desired state can be selected from an otherwise multistable regime. We propose goal functions based on both the difference of the oscillators and a generalized order parameter and demonstrate that the speed-gradient method allows one to find appropriate coupling phases with which different states of synchronization, e.g., in-phase oscillation, splay or various cluster states, can be selected.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا