ترغب بنشر مسار تعليمي؟ اضغط هنا

A hierarchy of Palm measures for determinantal point processes with gamma kernels

129   0   0.0 ( 0 )
 نشر من قبل Grigori Olshanski
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The gamma kernels are a family of projection kernels $K^{(z,z)}=K^{(z,z)}(x,y)$ on a doubly infinite $1$-dimensional lattice. They are expressed through Eulers gamma function and depend on two continuous parameters $z,z$. The gamma kernels initially arose from a model of random partitions via a limit transition. On the other hand, these kernels are closely related to unitarizable representations of the Lie algebra $mathfrak{su}(1,1)$. Every gamma kernel $K^{(z,z)}$ serves as a correlation kernel for a determinantal measure $M^{(z,z)}$, which lives on the space of infinite point configurations on the lattice. We examine chains of kernels of the form $$ ldots, K^{(z-1,z-1)}, ; K^{(z,z)},; K^{(z+1,z+1)}, ldots, $$ and establish the following hierarchical relations inside any such chain: Given $(z,z)$, the kernel $K^{(z,z)}$ is a one-dimensional perturbation of (a twisting of) the kernel $K^{(z+1,z+1)}$, and the one-point Palm distributions for the measure $M^{(z,z)}$ are absolutely continuous with respect to $M^{(z+1,z+1)}$. We also explicitly compute the corresponding Radon-Nikodym derivatives and show that they are given by certain normalized multiplicative functionals.



قيم البحث

اقرأ أيضاً

For a determinantal point process induced by the reproducing kernel of the weighted Bergman space $A^2(U, omega)$ over a domain $U subset mathbb{C}^d$, we establish the mutual absolute continuity of reduced Palm measures of any order provided that th e domain $U$ contains a non-constant bounded holomorphic function. The result holds in all dimensions. The argument uses the $H^infty(U)$-module structure of $A^2(U, omega)$. A corollary is the quasi-invariance of our determinantal point process under the natural action of the group of compactly supported diffeomorphisms of $U$.
441 - Dan Betea 2020
We show that the symplectic and orthogonal character analogues of Okounkovs Schur measure (on integer partitions) are determinantal, with explicit correlation kernels. We apply this to prove certain Borodin-Okounkov-Gessel-type results concerning Toe plitz+Hankel and Fredholm determinants; a SzegH{o}-type limit theorem; an edge Baik-Deift-Johansson-type asymptotical result for certain symplectic and orthogonal analogues of the poissonized Plancherel measure; and a similar result for actual poissonized Plancherel measures supported on almost symmetric partitions.
We show that the central limit theorem for linear statistics over determinantal point processes with $J$-Hermitian kernels holds under fairly general conditions. In particular, We establish Gaussian limit for linear statistics over determinantal poin t processes on union of two copies of $mathbb{R}^d$ when the correlation kernels are $J$-Hermitian translation-invariant.
For a Pfaffian point process we show that its Palm measures, its normalised compositions with multiplicative functionals, and its conditional measures with respect to fixing the configuration in a bounded subset are Pfaffian point processes whose kernels we find explicitly.
We consider Gibbs distributions on permutations of a locally finite infinite set $Xsubsetmathbb{R}$, where a permutation $sigma$ of $X$ is assigned (formal) energy $sum_{xin X}V(sigma(x)-x)$. This is motivated by Feynmans path representation of the q uantum Bose gas; the choice $X:=mathbb{Z}$ and $V(x):=alpha x^2$ is of principal interest. Under suitable regularity conditions on the set $X$ and the potential $V$, we establish existence and a full classification of the infinite-volume Gibbs measures for this problem, including a result on the number of infinite cycles of typical permutations. Unlike earlier results, our conclusions are not limited to small densities and/or high temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا