ﻻ يوجد ملخص باللغة العربية
We present a symmetry-adapted real-space formulation of Kohn-Sham density functional theory for cylindrical geometries and apply it to the study of large X (X=C, Si, Ge, Sn) nanotubes. Specifically, starting from the Kohn-Sham equations posed on all of space, we reduce the problem to the fundamental domain by incorporating cyclic and periodic symmetries present in the angular and axial directions of the cylinder, respectively. We develop a high-order finite-difference parallel implementation of this formulation, and verify its accuracy against established planewave and real-space codes. Using this implementation, we study the band structure and bending properties of X nanotubes and Xene sheets, respectively. Specifically, we first show that zigzag and armchair X nanotubes with radii in the range 1 to 5 nm are semiconducting. In particular, we find an inverse linear dependence of the bandgap with respect to the radius for all nanotubes, other than the armchair and zigzag type III carbon variants, for which we find an inverse quadratic dependence. Next, we exploit the connection between cyclic symmetry and uniform bending deformations to calculate the bending moduli of Xene sheets in both zigzag and armchair directions. We find Kirchhoff-Love type bending behavior for all sheets, with graphene and stanene possessing the largest and smallest moduli, respectively. In addition, other than graphene, the sheets demonstrate significant anisotropy, with larger bending moduli along the armchair direction. Finally, we demonstrate that the proposed approach has very good parallel scaling and is highly efficient, enabling ab initio simulations of unprecedented size for systems with a high degree of cyclic symmetry. In particular, we show that even micron-sized nanotubes can be simulated with modest computational effort.
We present a real-space formulation and implementation of Kohn-Sham Density Functional Theory suited to twisted geometries, and apply it to the study of torsional deformations of X (X = C, Si, Ge, Sn) nanotubes. Our formulation is based on higher ord
We study the origin of the strong spin Hall effect (SHE) in a recently discovered family of Weyl semimetals, LaAl$X$ ($X$=Si, Ge) via a first-principles approach with maximally localized Wannier functions. We show that the strong intrinsic SHE in LaA
We present an accurate and efficient real-space formulation of the Hellmann-Feynman stress tensor for $mathcal{O}(N)$ Kohn-Sham density functional theory (DFT). While applicable at any temperature, the formulation is most efficient at high temperatur
A real-space formalism for density-functional perturbation theory (DFPT) is derived and applied for the computation of harmonic vibrational properties in molecules and solids. The practical implementation using numeric atom-centered orbitals as basis
The evolution of the thermopower EuCu{2}(Ge{1-x}Si{x}){2} intermetallics, which is induced by the Si-Ge substitution, is explained by the Kondo scattering of conduction electrons on the Eu ions which fluctuate between the magnetic 2+ and non-magnetic