ﻻ يوجد ملخص باللغة العربية
The merger of neutron star binaries is believed to eject a wide range of heavy elements into the universe. By observing the emission from this ejecta, scientists can probe the ejecta properties (mass, velocity and composition distributions). The emission (a.k.a. kilonova) is powered by the radioactive decay of the heavy isotopes produced in the merger and this emission is reprocessed by atomic opacities to optical and infra-red wavelengths. Understanding the ejecta properties requires calculating the dependence of this emission on these opacities. The strong lines in the optical and infra-red in lanthanide opacities have been shown to significantly alter the light-curves and spectra in these wavelength bands, arguing that the emission in these wavelengths can probe the composition of this ejecta. Here we study variations in the kilonova emission by varying individual lanthanide (and the actinide uranium) concentrations in the ejecta. The broad forest of lanthanide lines makes it difficult to determine the exact fraction of individual lanthanides. Nd is an exception. Its opacities above 1 micron are higher than other lanthanides and observations of kilonovae can potentially probe increased abundances of Nd. Similarly, at early times when the ejecta is still hot (first day), the U opacity is strong in the 0.2-1 micron wavelength range and kilonova observations may also be able to constrain these abundances.
Neutron star mergers offer unique conditions for the creation of the heavy elements and additionally provide a testbed for our understanding of this synthesis known as the $r$-process. We have performed dynamical nucleosynthesis calculations and iden
The mergers of binary neutron stars, as well as black hole-neutron star systems, are expected to produce an electromagnetic counterpart that can be analyzed to infer the element synthesis that occurred in these events. We investigate one source of un
Compact object mergers can produce a thermal electromagnetic counterpart (a kilonova) powered by the decay of freshly synthesized radioactive isotopes. The luminosity of kilonova light curves depends on the efficiency with which beta-decay electrons
The light curves of type-II supernovae (SNe) are believed to be highly affected by recombination of hydrogen that takes place in their envelopes. In this work, we analytically investigate the transition from a fully ionized envelope to a partially re
Supernovae of type IIP are marked by the long plateau seen in their optical light curves. The plateau is believed to be the result of a recombination wave that propagates through the outflowing massive hydrogen envelope. Here, we analytically investi