ترغب بنشر مسار تعليمي؟ اضغط هنا

A Low-Complexity Antenna-Layout-Aware Spatial Covariance Matrix Estimation Method

62   0   0.0 ( 0 )
 نشر من قبل Shangbin Wu
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper proposed a low-complexity antenna layout-aware (ALA) covariance matrix estimation method. In the estimation process, antenna layout is assumed known at the estimator. Using this information, the estimator finds antenna pairs with statistically equivalent covariance values and sets their covariance values to the average of covariance values of all these antenna pairs. ALA for both uniform linear array (ULA) and uniform planar array (UPA) is discussed. This method takes the benefit that covariance matrices do not have full degrees of freedom. Then, the proposed ALA covariance matrix method is applied to a multi-cell network. Simulations have demonstrated that the proposed method can provide better performance than the widely used viaQ method, with respect to mean square errors and downlink spectral efficiencies.



قيم البحث

اقرأ أيضاً

223 - Yinsheng Liu , Yiwei Yan , Li You 2021
Multiple signal classification (MUSIC) has been widely applied in multiple-input multiple-output (MIMO) receivers for direction-of-arrival (DOA) estimation. To reduce the cost of radio frequency (RF) chains operating at millimeter-wave bands, hybrid analog-digital structure has been adopted in massive MIMO transceivers. In this situation, the received signals at the antennas are unavailable to the digital receiver, and as a consequence, the spatial covariance matrix (SCM), which is essential in MUSIC algorithm, cannot be obtained using traditional sample average approach. Based on our previous work, we propose a novel algorithm for SCM reconstruction in hybrid massive MIMO systems with multiple RF chains. By switching the analog beamformers to a group of predetermined DOAs, SCM can be reconstructed through the solutions of a set of linear equations. In addition, based on insightful analysis on that linear equations, a low-complexity algorithm, as well as a careful selection of the predetermined DOAs, will be also presented in this paper. Simulation results show that the proposed algorithms can reconstruct the SCM accurately so that MUSIC algorithm can be well used for DOA estimation in hybrid massive MIMO systems with multiple RF chains.
Reconfigurable intelligent surfaces (RISs) have recently received widespread attention in the field of wireless communication. An RIS can be controlled to reflect incident waves from the transmitter towards the receiver; a feature that is believed to fundamentally contribute to beyond 5G wireless technology. The typical RIS consists of entirely passive elements, which requires the high-dimensional channel estimation to be done elsewhere. Therefore, in this paper, we present a semi-passive large-scale RIS architecture equipped with only a small fraction of simplified receiver units with only 1-bit quantization. Based on this architecture, we first propose an alternating direction method of multipliers (ADMM)-based approach to recover the training signals at the passive RIS elements, We then obtain the global channel by combining a channel sparsification step with the generalized approximate message passing (GAMP) algorithm. Our proposed scheme exploits both the sparsity and low-rankness properties of the channel in the joint spatial-frequency domain of a wideband mmWave multiple-input-multiple-output (MIMO) communication system. Simulation results show that the proposed algorithm can significantly reduce the pilot signaling needed for accurate channel estimation and outperform previous methods, even with fewer receiver units.
Low-complexity improved-throughput generalised spatial modulation (LCIT-GSM) is proposed. More explicitly, in GSM, extra information bits are conveyed implicitly by activating a fixed number $N_{a}$ out of $N_{t}$ transmit antennas (TAs) at a time. A s a result, GSM has the advantage of a reduced number of radio-frequency (RF) chains and reduced inter-antenna interference (IAI) at the cost of a lower throughput than its multiplexing-oriented full-RF based counterparts. Variable-${N_a}$ GSM mitigates this throughput reduction by incorporating all possible TA activation patterns associated with a variable value $N_{a}$ ranging from $1$ to $N_{t}$ during a single channel-use, which maximises the throughput of GSM but suffers a high complexity of the mapping book design and demodulation. In order to mitigate the complexity, emph{first of all}, we propose two efficient schemes for mapping the information bits to the TA activation patterns, which can be readily scaled to massive MIMO setups. emph{Secondly}, in the absence of IAI, we derive a pair of low-complexity near-optimal detectors, one of them has a reduced search scope, while the other benefits from a decoupled single-stream based signal detection algorithm. emph{Finally}, the performance of the proposed LCIT-GSM system is characterised by the error probability upper bound (UB). Our Monte Carlo based simulation results confirm the improved error performance of our proposed scheme, despite its reduced signal detection complexity.
This paper investigates joint antenna selection and optimal transmit power in multi cell massive multiple input multiple output systems. The pilot interference and activated transmit antenna selection plays an essential role in maximizing energy effi ciency. We derived the closed-form of maximal energy efficiency with complete knowledge of large-scale fading with maximum ratio transmission while accounting for channel estimation and eliminated pilot contamination when the antennas approach infinity. We investigated joint optimal antenna selection and optimal transmit power under minimized reuse of pilot sequences based on a novel iterative low-complexity algorithm for Lagrange multiplayer and Newton methods. The two scenarios of achievable high data rate and total transmit power allocation are critical to the performance maximal energy efficiency. We propose new power consumption for each antenna based on the transmit power amplifier and circuit power consumption to analyze exact power consumption. The simulation results show that maximal energy efficiency could be achieved using the iterative low complexity algorithm based on the reasonable maximum transmit power when the noise power was less than the power received pilot. The proposed low complexity iterative algorithm offers maximum energy efficiency by repeating a minimized pilot signal until the optimal antenna selection and transmission power are achieved.
Obtaining channel covariance knowledge is of great importance in various Multiple-Input Multiple-Output MIMO communication applications, including channel estimation and covariance-based user grouping. In a massive MIMO system, covariance estimation proves to be challenging due to the large number of antennas ($Mgg 1$) employed in the base station and hence, a high signal dimension. In this case, the number of pilot transmissions $N$ becomes comparable to the number of antennas and standard estimators, such as the sample covariance, yield a poor estimate of the true covariance and are undesirable. In this paper, we propose a Maximum-Likelihood (ML) massive MIMO covariance estimator, based on a parametric representation of the channel angular spread function (ASF). The parametric representation emerges from super-resolving discrete ASF components via the well-known MUltiple SIgnal Classification (MUSIC) method plus approximating its continuous component using suitable limited-support density function. We maximize the likelihood function using a concave-convex procedure, which is initialized via a non-negative least-squares optimization problem. Our simulation results show that the proposed method outperforms the state of the art in various estimation quality metrics and for different sample size to signal dimension ($N/M$) ratios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا