ﻻ يوجد ملخص باللغة العربية
We optimize optical performance of metasurfaces based on periodically corrugated silicon layers by adjusting the Fourier coefficients of their surface profile. For smooth corrugations, we demonstrate an excellent quantitative accuracy of semi-analytical approach based on the Rayleigh hypothesis. We employ the approach to design metasurfaces with anomalous refraction due to dominant first order diffraction. Unlike conventional Huygens dielectric metasurfaces, corrugated silicon layers are capable of efficient anomalous refraction in grazing directions: we obtain corrugation shapes allowing to deflect 70-80% of the energy of normally incident green light into the range of 68{deg}-85{deg} of angles with respect to the normal.
We theoretically investigate the dependence of the enhancement of optical near-fields at nanometric tips on the shape, size, and material of the tip. We confirm a strong dependence of the field enhancement factor on the radius of curvature. In additi
Refraction at the interface between two materials is fundamental to the interaction of light with photonic devices and to the propagation of light through the atmosphere at large. Underpinning the traditional rules for the refraction of an optical fi
High refractive index contrast optical microdisk resonators fabricated from silicon-on-insulator wafers are studied using an external silica fiber taper waveguide as a wafer-scale optical probe. Measurements performed in the 1500 nm wavelength band s
Next generation cosmic microwave background (CMB) polarization anisotropy measurements will feature focal plane arrays with more than 600 millimeter-wave detectors. We make use of high-resolution photolithography and wafer-scale etch tools to build p
While nanoscale color generations have been studied for years, high performance transmission structural colors, simultaneously equipped with large gamut, high resolution, low loss and optical multiplexing abilities, still remain as a hanging issue. H