ﻻ يوجد ملخص باللغة العربية
Lifting theorems are theorems that relate the query complexity of a function $f:{0,1}^{n}to{0,1}$ to the communication complexity of the composed function $f circ g^{n}$, for some gadget $g:{0,1}^{b}times{0,1}^{b}to{0,1}$. Such theorems allow transferring lower bounds from query complexity to the communication complexity, and have seen numerous applications in the recent years. In addition, such theorems can be viewed as a strong generalization of a direct-sum theorem for the gadget $g$. We prove a new lifting theorem that works for all gadgets $g$ that have logarithmic length and exponentially-small discrepancy, for both deterministic and randomized communication complexity. Thus, we significantly increase the range of gadgets for which such lifting theorems hold. Our result has two main motivations: First, allowing a larger variety of gadgets may support more applications. In particular, our work is the first to prove a randomized lifting theorem for logarithmic-size gadgets, thus improving some applications of the theorem. Second, our result can be seen as a strong generalization of a direct-sum theorem for functions with low discrepancy.
We investigate query-to-communication lifting theorems for models related to the quantum adversary bounds. Our results are as follows: 1. We show that the classical adversary bound lifts to a lower bound on randomized communication complexity with
We show a nearly quadratic separation between deterministic communication complexity and the logarithm of the partition number, which is essentially optimal. This improves upon a recent power 1.5 separation of Goos, Pitassi, and Watson (FOCS 2015). I
In this work we introduce, both for classical communication complexity and query complexity, a modification of the partition bound introduced by Jain and Klauck [2010]. We call it the public-coin partition bound. We show that (the logarithm to the ba
State complexity of quantum finite automata is one of the interesting topics in studying the power of quantum finite automata. It is therefore of importance to develop general methods how to show state succinctness results for quantum finite automata
Language-integrated query based on comprehension syntax is a powerful technique for safe database programming, and provides a basis for advanced techniques such as query shredding or query flattening that allow efficient programming with complex nest