ﻻ يوجد ملخص باللغة العربية
We study dry, dense active nematics at both particle and continuous levels. Specifically, extending the Boltzmann-Ginzburg-Landau approach, we derive well-behaved hydrodynamic equations from a Vicsek-style model with nematic alignment and pairwise repulsion. An extensive study of the phase diagram shows qualitative agreement between the two levels of description. We find in particular that the dynamics of topological defects strongly depends on parameters and can lead to ``arch solutions forming a globally polar, smectic arrangement of Neel walls. We show how these configurations are at the origin of the defect ordered states reported previously. This work offers a detailed understanding of the theoretical description of dense active nematics directly rooted in their microscopic dynamics.
Active matter comprises individual units that convert energy into mechanical motion. In many examples, such as bacterial systems and biofilament assays, constituent units are elongated and can give rise to local nematic orientational order. Such `act
We examine the scaling with activity of the emergent length scales that control the nonequilibrium dynamics of an active nematic liquid crystal, using two popular hydrodynamic models that have been employed in previous studies. In both models we find
We develop a statistical framework for the rheology of dense, non-Brownian suspensions, based on correlations in a space representing forces, which is dual to position space. Working with the ensemble of steady state configurations obtained from simu
Using agent-based simulations of self-propelled particles subject to short-range repulsion and nematic alignment we explore the dynamical phases of a dense active material confined to the surface of a sphere. We map the dynamical phase diagram as a f
We theoretically study the non-monotonic (re-entrant) activated dynamics associated with a repulsive glass to fluid to attractive glass transition in high density particle suspensions interacting via strong short range attractive forces. The classic