ﻻ يوجد ملخص باللغة العربية
Automatic Speech Recognition (ASR) systems have proliferated over the recent years to the point that free platforms such as YouTube now provide speech recognition services. Given the wide selection of ASR systems, we contribute to the field of automatic speech recognition by comparing the relative performance of two sets of manual transcriptions and five sets of automatic transcriptions (Google Cloud, IBM Watson, Microsoft Azure, Trint, and YouTube) to help researchers to select accurate transcription services. In addition, we identify nonverbal behaviors that are associated with unintelligible speech, as indicated by high word error rates. We show that manual transcriptions remain superior to current automatic transcriptions. Amongst the automatic transcription services, YouTube offers the most accurate transcription service. For non-verbal behavioral involvement, we provide evidence that the variability of smile intensities from the listener is high (low) when the speaker is clear (unintelligible). These findings are derived from videoconferencing interactions between student doctors and simulated patients; therefore, we contribute towards both the ASR literature and the healthcare communication skills teaching community.
The front-end module in multi-channel automatic speech recognition (ASR) systems mainly use microphone array techniques to produce enhanced signals in noisy conditions with reverberation and echos. Recently, neural network (NN) based front-end has sh
We introduce asynchronous dynamic decoder, which adopts an efficient A* algorithm to incorporate big language models in the one-pass decoding for large vocabulary continuous speech recognition. Unlike standard one-pass decoding with on-the-fly compos
Recently, streaming end-to-end automatic speech recognition (E2E-ASR) has gained more and more attention. Many efforts have been paid to turn the non-streaming attention-based E2E-ASR system into streaming architecture. In this work, we propose a nov
Speech emotion recognition is a crucial problem manifesting in a multitude of applications such as human computer interaction and education. Although several advancements have been made in the recent years, especially with the advent of Deep Neural N
Automatic speech recognition (ASR) for under-represented named-entity (UR-NE) is challenging due to such named-entities (NE) have insufficient instances and poor contextual coverage in the training data to learn reliable estimates and representations